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1 Introduction

1.1 Undercooling

It is widely believed that if air containing water vapor is cooled to its dew point, droplets
of water are formed. Similarly, it is commonly thought that if water is cooled to 0�C, it
freezes. Although common experience seems to support both views, they are not correct.
It is only when vapor and liquid are cooled well below the condensation and freezing
point, respectively, that the transition from one phase to the other occurs.

Already in the beginning of the 18th century observations of this phenomenon of un-
dercooling were reported. Fahrenheit [1] found that boiled water could be kept overnight
at the undercooled temperature of �9�C (16�F) without freezing. Only when small ice
particles were introduced was the crystallization process initiated, and the temperature
of the ice-water mixture rose to 0�C, the \freezing" point of water. At the end of the last
century Ostwald [2] noted that highly supercooled melts, which he called \labil", crys-
tallize spontaneously, whereas weakly undercooled liquids, which he called \metastabil",
only crystallize after, for instance, \ein leises �Uberstreichen eines Menschenhaares".

Why can we supersaturate a vapor or undercool a liquid? This is not obvious because,
beyond the saturation point, the liquid is more stable than the vapor and below the
freezing point the solid is more stable than the liquid. It would seem natural that when
a phase is cooled to its coexistence point, small amounts of the new phase will appear. In
fact, in many textbooks it is asserted that when a phase is progressively cooled below its
coexistence point, steadily increasing amounts of the new phase will indeed be formed.

In this context it is instructive to consider the generic phase diagram in Fig. 1.1.
Depending on the temperature and density, the system can occur in three phases{a
vapor, a liquid, and a crystalline phase. Now suppose that we prepare our system
in state A, i.e. in the vapor phase, and slowly compress the system towards state
B, the saturation point. If we then increase the density even further, macroscopic
thermodynamics would tell us that we enter the vapor-liquid coexistence region, and,
according to the lever rule, increasing amounts of the liquid phase should be formed.
However, in practice, when we slightly compress the system beyond the saturation point
B, we will not observe the formation of liquid at all. The system remains in the vapor
state and behaves as if the saturation point simply does not exist.

The problem is illustrated in Fig. 1.2, which shows the chemical potential � as a
function of pressure P at a given temperature. At the liquid-vapor coexistence point B,
the chemical potential of the vapor is equal to that of the liquid. For higher pressures,
the liquid is more stable than the vapor. However, when the system is compressed
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beyond the coexistence point, it will follow the vapor isotherm, and not \jump" to the
liquid isotherm.

So far I have only indicated why it should not be possible to supersaturate a system.
What is then the reason for this phenomenon? The answer is that the only route to
the more stable state is via the formation of small nuclei 1. The free energy of such
nuclei is determined not only by the di�erence in chemical potential between vapor and
liquid, which drives the nucleation process, but also by the surface free energy. The
surface free energy term is always positive, because of the work that must be done to
create an interface. Moreover, initially this term dominates and hence the free energy
of a nucleus increases with size. Only when the droplet has reached a certain \critical"
size, the volume term takes over, and the free energy decreases. It is only from here on
that the nucleus grows spontaneously into a bulk liquid.

Gibbs [3] was the �rst to realize that the stability of a phase is related to the work
that has to be done to create a critical nucleus of the new phase. However, the relevance
of his work to nucleation remained largely unrecognized until the 1920's and 1930's when
Volmer and Weber [4], and Becker and D�oring [5] laid the foundations for what is now
called classical nucleation theory. In classical nucleation theory it is assumed that the
nuclei are compact, spherical objects, that behave like small droplets of bulk phase. As
will be discussed in more detail in chapter 2, the free energy of a spherical liquid droplet
of radius R in a vapor is then given by

�G = 4�R2
 +
4

3
�R3���; (1.1)

where 
 is the surface free energy, � is the density of the bulk liquid, and �� is the
di�erence in chemical potential between bulk liquid and bulk vapor. Clearly, the �rst
term on the right hand side of Eq. (1.1) is the surface term, which is positive, and the
second term is the volume term, which is negative. Fig. 1.3 shows the free energy of a
nucleus as a function of R. It is seen that the free energy goes through a maximum.
The height of the nucleation barrier can easily be obtained from the above expression,

1We will not discuss the mechanism of spinodal decomposition; thus we consider states between

points B and C, but not too close to point C, in Fig. 1.2.
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yielding

�G� =
16�
3

3�2��2
: (1.2)

This equation shows that the barrier height depends not only on the surface free energy 

(and the density �), but also on the di�erence in chemical potential ��. The di�erence in
chemical potential is related to the supersaturation, as can be seen from Fig. 1.2. Hence,
the height of the free-energy barrier that separates the stable from the metastable phase
depends on the degree of supersaturation. At coexistence, the di�erence in chemical
potential is zero, and the height of the barrier is in�nite. Although the system is equally
likely in the liquid and vapor phase, once the system is one state or the other, the system
will remain in this state; it simply cannot transform into the other state.

The phenomenon of undercooling is not only interesting from an academic point of
view, but also has many practical consequences. In materials science, it is well known
that the structural and mechanical properties of metals that are formed from an under-
cooled melt are determined by the rate of crystallization [6, 7]. In particular, in rapid
solidi�cation techniques metastable phases are selected over the thermodynamically most
stable phase by exploiting the higher nucleation rate of the metastable phases [8]. Bosio
et al. [9, 10] demonstrated that when a gallium melt is cooled around �75�C, the stable
� phase is nucleated, but that when the melt is undercooled further, more than four dif-
ferent metastable phases can be formed. In atmospheric science, the nucleation of both
water droplets and ice crystals in the atmosphere has a major e�ect both in the short
term on the weather and in the long term on the climate. Furthermore, certain biologi-
cal processes that lead to diseases such as sickle-cell anemia, cataracts, Alzheimer's, and
prion diseases like Creutzfeld-Jacob, are thought to involve the nucleation of a protein
condensate.

Because of its importance in many �elds of science and technology, nucleation has
been the subject of extensive experimental and theoretical study. Many attempts have
been made to re�ne classical nucleation theory [11]. In addition, extensions of classical
nucleation theory have been proposed [12, 13] and novel theoretical methods have been
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developed that make it possible to go beyond the essentially macroscopic description
of classical nucleation theory [14]. In parallel, over the past years the experimental
techniques have greatly been improved and nucleation rates can be measured with un-
precedented accuracy [6, 15, 16]. However, our understanding of the nucleation process
at a microscopic level is still limited. The reason is that nucleation is an activated
process.

In experiments the height of the barrier is typically on the order of 75kBT , where
kBT is the thermal energy. This means that the probability to �nd a nucleus at the top
of the nucleation barrier is extremely small, on the order of 10�12 per cm3. Moreover,
once the system is at the top of the barrier, it quickly proceeds to the liquid state, or
returns to the vapor state{the time it spends at the top of the barrier is on the order of
pico-seconds to nano-seconds for atomic or simple molecular systems. Hence, nucleation
is both infrequent and fast. It is precisely for this reason that it is very di�cult to
study the critical nuclei directly in an experiment. Yet, it is the structure and dynamics
of these critical nuclei that play a crucial role in the nucleation process. Computer
simulations are a natural tool to study the nucleation process.

The most straightforward application of molecular dynamics simulations to nucle-
ation is to supercool the system and then simply wait for nuclei to appear [17{25].
However, this approach cannot be used to study nucleation under typical experimental
conditions. In computer simulations, we are limited to studying relatively small systems
(say, of the order of a million particles or less). This means that the volume of the
simulation box is less than 10�16 cm3. Experimentally observable nucleation rates of
the order of one nucleus per cm3 per second, would correspond to the formation of one
nucleus per 1016 seconds in our simulation box. If we take a typical value of 10�14 sec-
onds for the length of the molecular-dynamics time-step, then to observe on average one
nucleation event, 1030 time-steps would be needed in a simulation of 106 particles. As
the nucleation barrier decreases as 1=�T 2, where �T is the degree of supercooling, very
large supercoolings (in the order of 40%) have to be imposed to observe spontaneous
nucleation in a conventional simulation.

However, we are interested in nucleation at moderate, i.e. more realistic under-
cooling. We therefore separate the problem into two parts: 1) the computation of the
free-energy barrier for nucleation and 2) the computation of the rate at which this barrier
is crossed. For the computation of the free-energy barrier that separates the stable phase
from the metastable phase, we use the umbrella sampling scheme [26, 27]. The rate at
which this barrier is crossed is computed using the Bennett-Chandler scheme [28{31].
Over the past years, much progress has been made in deriving statistical mechanical
expressions for the rate of activated process that are convenient to use in numerical
simulations. However, much of this work is concerned with relatively simple barrier
crossings, involving a reaction coordinate that is local, rather than global. In contrast, in
the present work the reaction coordinate that connects the metastable phase with the
stable phase is a global order parameter, that depends on the positions of all particles
in the system. In this thesis, we compute the rate of barrier crossings associated with
such complex (many-body) reaction coordinates.

Finally, let me come back to the opening paragraph, in which I stated that daily ex-
perience suggests that water freezes around 0�C and that water vapor condenses around
100�C. What is misleading us? The answer is that in practice phase transitions are
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usually assisted by impurities, dust particles, container walls, or, in general, any foreign
body that is present in the system. The nuclei that initiate the phase transformation
are then formed at the surfaces of these foreign bodies. The nucleation barrier for this
process, called heterogeneous nucleation, is usually much lower than for homogeneous
nucleation occurring in the bulk of a pure phase. Consequently, in practice vapor and
liquids usually condense and freeze at a much smaller degree of supersaturation than
can be reached for pure substances.

This thesis is devoted to homogeneous nucleation. One reason is that homogeneous
nucleation is still not well understood, let alone heterogeneous nucleation. The second
reason is that almost all nucleation theories are concerned with homogeneous nucle-
ation. For the same reason, most experiments are devoted to studying homogeneous
nucleation. They are therefore designed such as to exclude the heterogeneous nucleation
process. Obviously, one can reduce the e�ect of impurities by purifying the sample, al-
though in practice this can be quite di�cult, especially for liquids. Another approach, in
case of crystal nucleation from the melt, is to study nucleation in small liquid droplets,
rather than in a bulk liquid. To this end, several techniques have been developed. One
is the droplet emulsion technique [6], in which the liquid is dispersed into a large number
of small droplets in an appropriate medium; another technique for metals is to levitate
droplets in an electro-magnetic �eld [6]. The basic idea behind these techniques is that
if the droplets are su�ciently �ne, a signi�cant number of them will contain no impu-
rities and thus no such heterogeneous sites. However, another source of heterogeneous
nucleation is much more di�cult to eliminate: the surface of the container, or, in case of
the droplet technique, the surface of the droplet. The e�ect of surface nucleation can be
reduced by providing a less active coating of the container wall or by choosing the right
medium for the droplet suspension, but it can never be eliminated entirely. Even liquid
droplets in vacuum have a free surface that can a�ect the nucleation process. It is thus
clear that in an experiment it is very hard to eliminate heterogeneous sites. However, in
a computer simulation this is trivial. Computer simulations are therefore an excellent
instrument to study homogeneous nucleation.

1.2 Overview

Macroscopic thermodynamics dictates that the phase which is formed in a supersat-
urated system is the one that has the lowest free energy. However, nucleation is an
essentially dynamic process, and therefore one cannot expect a priori that, on supersat-
urating the system, the thermodynamically most stable phase will be formed. In 1897,
Ostwald [2] formulated his \step" rule, stating that the crystal phase that is nucleated
from the melt need not be the one that is thermodynamically most stable, but the one
that is closest in free energy to the 
uid phase. In this thesis we will demonstrate several
manifestations of the Ostwald step rule. However, the picture that will emerge is more
complex.

In chapter 3 we study crystal nucleation in a Lennard-Jones system at moderate
supercooling. The stable structure of the Lennard-Jones solid is known to be face-
centered cubic (fcc). However, according to the Ostwald step rule the formation of
metastable phases cannot be excluded. More recently, Alexander and McTague [32] have
argued on the basis of Landau theory, that at least for small undercooling, nucleation



14 Introduction

of the body-centered cubic (bcc) phase should uniquely be favored. However, in nearly
all simulation studies the formation of fcc nuclei was observed. Of interest is a study
by Swope and Andersen [25] on a system of one million Lennard-Jones particles. They
showed that although both bcc and fcc crystallites are formed in the early stages of the
nucleation process, only the fcc nuclei grow into larger crystallites. It should be noted
however, that in all these simulation studies very large degrees of undercooling had to
be imposed to see any crystal formation on the time scale of the simulation. For such
large undercoolings, the free-energy barrier for nucleation into essentially all possible
crystal phases is very small. It is therefore not obvious that crystal nucleation at large
undercooling will proceed in the same way as close to coexistence. Using the umbrella-
sampling technique [26, 27], we are able to study nucleation at experimental degrees of
undercooling. We �nd that the precritical nuclei are predominantly bcc ordered. But
as the nucleus grows to its critical size, the core becomes fcc ordered. However, the
interface of the critical nucleus retains a high degree of bcc-like ordering. The crystal
nucleation process in the Lennard-Jones system can be interpreted as a manifestation
of the Ostwald step rule. First a metastable bcc phase is nucleated, which is then
transformed into the stable fcc phase.

The Ostwald-step rule is usually applied to 
uid-solid transitions. However, in chap-
ter 8 we demonstrate that also in gas-liquid nucleation the Ostwald-step rule is sometimes
\obeyed". In this chapter we study homogeneous gas-liquid nucleation in a strongly po-
lar Stockmayer 
uid. While the nucleation rates of non-polar substances are in fair
agreement with the predictions of classical nucleation, the nucleation rates of strongly
polar substances, such as as acetonitrile, nitrobenzene and benzonitrile [33, 34], are seri-
ously overestimated by classical nucleation theory. It has therefore been suggested that
the anisotropic nature of the dipole-dipole interaction plays a crucial role in determining
the structure and free energy of the nuclei. Indeed, for bulk hard-sphere and soft-sphere
dipolar 
uids at low temperature, it has been observed that particles associate into
chains [35, 36]. On the other hand, the bulk liquid phase of the Stockmayer 
uid, in
which also dispersive attractions are present, is isotropic and does not exhibit signi�-
cant chain formation. We �nd that the condensation process is initiated by chain-like
clusters, rather than by small liquid droplets. As the cluster size is increased, the chains
become longer. However, beyond a certain size, the clusters collapse to form compact,
spherical clusters. Surprisingly though, in the interface a high degree of chain formation
is preserved.

Another manifestation of the Ostwald-step rule is found in the case of protein crystal
nucleation, which is discussed in chapter 9. Proteins are notoriously di�cult to crys-
tallize and the experiments indicate that the success of protein crystallization depends
very sensitively on the physical conditions of the initial solution. In particular, it has
been found that a variety of globular proteins only crystallize in a rather narrow region
in the phase-diagram [37, 38]. However, the origin of this crystallization \window" re-
mained unclear. Our simulations show that the presence of a metastable critical point
in this window strongly reduces the free-energy barrier for crystal nucleation and hence
increases the nucleation rate by many orders of magnitude. The reason for this is that
the metastable critical point drastically changes the pathway for the formation of the
critical nucleus. Near the critical point, the nucleus that is formed initially, is not simply
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metastable stable
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Figure 1.4 Sketch of the pathway for the formation of a critical nucleus.
In the case of crystal nucleation from the melt in a Lennard-Jones system
the metastable phase is the body-centered cubic phase and the stable phase
is the face-centered cubic phase. In gas-liquid nucleation of a polar 
uid
the metastable phase corresponds to chains and the stable phase to an
isotropic liquid. In the case of protein crystal nucleation the intermediate
phase is a high-density liquid and the stable phase is the crystalline phase.

a small crystallite, but rather a high-density liquidlike droplet; only when the droplet
has reached a certain size, does it start to crystallize inside the core.

In Fig. 1.4 we have sketched the path for the formation of a critical nucleus in the
systems discussed above. In all these cases the nucleation process can be interpreted
as a manifestation of the Ostwald-step rule. First a metastable phase is nucleated
(bcc/chains/liquid), which then slowly transforms into the stable phase (fcc/liquid/fcc-
crystal). Interestingly, in the interface of the larger nuclei traces of the structure of the
smaller nuclei are retained.

Nucleation does not always proceed via intermediate steps, as predicted by the Ost-
wald step rule. In chapters 5 and 6 we study homogeneous gas-liquid nucleation in a
Lennard-Jones system. In this case the nucleation process only involves \one step",
namely the formation of a liquid droplet. In these chapters we compare the barrier
height, the critical nucleus size, and the kinetic prefactor with the predictions of clas-
sical nucleation theory. In agreement with the relations recently proposed by McGraw
and Laaksonen [12, 13], we �nd that the size of the critical nucleus is correctly predicted
by classical nucleation theory, and that the o�set between the predicted barrier height
and the height of the nucleation barrier as found from the simulations is constant, and
independent of supersaturation. The kinetic prefactor is about one order of magnitude
larger than predicted by classical nucleation theory.

Furthermore, in chapter 5 we discuss the di�erence between the mechanical and
the thermodynamic de�nition of the surface tension and surface of tension. We �nd
that both de�nitions are not equivalent, which implies that we cannot use a simple
\mechanical" expression to compute the height of the nucleation barrier.

In chapter 7 we study homogeneous gas-liquid nucleation in a binary Lennard-Jones
system. Recently, Talanquer and Oxtoby [39] suggested a new pathway for the formation
of partially miscible binary mixtures. This path would involve nuclei of cylindrical shape
inside which the species are phase separated. We �nd that the nucleation of mixtures
that show a macroscopic miscibility gap, is initiated by clusters in which both species are
mixed. However, when the cluster size is increased the path bifurcates and two channels
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develop, corresponding to nuclei enriched in one of the two components. In all cases,
the critical nuclei are spherical. The cylindrical, micro-phase separated nuclei predicted
by Talanquer and Oxtoby only appear at the top of the free-energy ridge separating the
two types of critical nuclei. These clusters correspond to local free-energy maxima and
they probably play no role in the nucleation process.

In chapter 4 we discuss a more technical aspect of the simulations, namely the choice
of the reaction coordinate. But �rst, in chapter 2, we review some aspects of the ther-
modynamics of small droplets for readers who are not familiar with this subject.



2 Thermodynamics of small

droplets

In this chapter we brie
y review the thermodynamics of small droplets. Subsequently, we

discuss the theory that is most widely used to describe the nucleation process: classical

nucleation theory. Next, we consider the discrepancy between experiments and classical

nucleation theory and discuss the extensions of classical nucleation theory that McGraw

and Laaksonen proposed to resolve this discrepancy. We present a simple derivation of

the nucleation theorem. This theorem plays a crucial role in the analysis of experimental

nucleation data because it allows us to determine the size and composition of the critical

nucleus from the measured nucleation rates.

2.1 Introduction

When a vapor is supersaturated, the liquid is more stable than the vapor. However, the
vapor will not condense immediately. First, nuclei of the liquid phase have to be formed.
This is an activated process. The droplets have to cross a free-energy barrier in order
to grow into a bulk liquid. Nuclei at the top of the free-energy barrier are called critical
nuclei. Nuclei that are smaller than the critical nucleus size, the so-called precritical
nuclei, have a tendency to shrink, because in that way they can lower their free energy.
For the same reason, nuclei that are larger than the critical size, the so-called postcritical
nuclei, tend to grow.

The nuclei at the top of the barrier play a crucial in the nucleation process. It is
the structure and the free energy of the critical nuclei that determine the height of the
nucleation barrier and hence the nucleation rate. For this reason all nucleation theories
are concerned with the description of the nuclei at the top of the nucleation barrier.

In this chapter we �rst discuss some aspects of the thermodynamics of droplets
that are useful to understand nucleation. In this discussion we borrow heavily from the
excellent reviews by Ono and Kondo [40] and Rowlinson and Widom [41], as well as from
the earlier papers by Gibbs [3] and Tolman [42]. We then describe classical nucleation
theory and the extensions recently proposed by McGraw and Laaksonen [12, 13]. We
conclude with a derivation of the nucleation theorem. Using the nucleation theorem it
is possible to derive the size and composition of critical nuclei from the variation of the
nucleation rate with supersaturation.



18 Thermodynamics of small droplets

2.2 Thermodynamics of droplets

2.2.1 Fundamental thermodynamic relations

Consider a spherical drop of phase � surrounded by a phase �. The two phases meet in
a thin transition layer of physical inhomogeneity. However, it is convenient to treat the
two phases as being uniform up to an imaginary geometrical surface that divides the
two phases. This surface was called by Gibbs [3] the dividing surface.

In the following, we focus our attention on a small part of the system contained in
a conical vessel, as indicated in Fig. 2.1. Here ! is the solid angle and R denotes the
location of the dividing surface. After we have speci�ed the position of the dividing
surface, we can de�ne the volumes V� and V�. From the geometry of the cone we �nd

V� =
1

3
!
�
R3 �R3

�

	
;

V� =
1

3
!
�
R3
� �R3

	
:

(2.1)

The area of the dividing surface A is given by

A = !R2: (2.2)

Let us now derive the total internal energy of the system. We postulate that the
internal energy U is a homogeneous �rst-order function of the extensive parameters S,
! and N :

U = U(S; !;N): (2.3)

We identify S with the total entropy of the system and N is the total number of particles.
The �rst di�erential of the fundamental equation is given by

dU = TdS + �d! + �dN; (2.4)

where T is the temperature, � is the chemical potential and � is the intensive variable
conjugate to the extensive variable !. The term �d! is related to the work dW associated

α

α

β

ω

βR

R

R

V

V

Figure 2.1 Conical
section of the spher-
ical drop of phase �
surrounded by a phase
�. ! is the opening
angle of the cone and
R denotes the location
of the dividing sur-
face.
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with an increase d! of the opening angle. It is given quantitatively by

dW = ��d! = p�dV� + p�dV� � 
dA: (2.5)

Here p� and p� are the pressures in phase � and �, respectively. The last term 
dA takes
into account the contribution of the interface. The coe�cient 
 is the surface tension.
It is an (intensive) parameter yielding the change in free energy upon an increase in the
area of the interface at constant curvature.

The total internal energy now follows from the de�nition of the homogeneous �rst-
order property [43] of the fundamental relation in Eq. (2.3). We �nd

U = TS + �! + �N = TS � p�V� � p�V� + 
A+ �N: (2.6)

The Helmholtz free energy F is obtained by a Legendre transformation of the internal
energy:

F = �! + �N = 
A� p�V� � p�V� + �N: (2.7)

2.2.2 Laplace equation

When a droplet is in equilibrium with the vapor, the pressure of the 
uid inside is
larger than that of the vapor outside. However, the larger pressure inside the drop
is counterbalanced by the surface tension. The magnitude of the pressure di�erence
depends not only on the surface tension, but also on the size of the droplet.

The Laplace equation provides a relation between the pressure di�erence over the
droplet, the surface tension and the droplet size. It can be derived from Eq. (2.5). We
note that the changes in V� and V� are caused by a variation in !. It then follows from
the geometry of the cone that


 =
1

3
R(p� � p�) +

1

R2

�
� +

1

3
R3
�p� �

1

3
R3
�p�

�
: (2.8)

The Laplace equation is now obtained by di�erentiating Eq. (2.8) with respect to R:

p� � p� � �p =
2


R
+

�
@


@R

�
: (2.9)

The second term is enclosed in square brackets to indicate that it denotes the change in
the surface tension associated with a mathematical displacement of the location of the
dividing surface; it does not correspond to any physical change. In the following we will
call such a derivative a notational derivative.

The concept of a dividing surface has only been introduced for mathematical conve-
nience. This implies that the free energy of the system should not depend on its location.
To see that this is indeed so, let us �rst consider the work done by the system by not
only a variation in !, but also by a change in R� and R�. It is given by

dW = ��d! + p�!R
2
�dR� � p�!R

2
�dR�: (2.10)

The change in free energy F associated with these changes is given by

dF = �dW � SdT + �dN: (2.11)
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Using Eq. (2.9), and Eqs. (2.1) and (2.2), we then �nd

dF = �SdT � p�dV� � p�dV� + 
dA+

�
d


dR

�
AdR + �dN

= �SdT � p�dV� � p�dV� + 
dA+

�
(p� � p�)� 2


R

�
AdR + �dN:

(2.12)

From this equation it is easily found that that dF = 0 for an in�nitesimal variation of
the location of the dividing surface, for which the following relations hold:

dV� = �dV� = AdR; dA = 2A
dR

R
: (2.13)

It is clear that the free energy of the total system does not depend on the location
of the dividing surface. However, the surface tension does depend on our choice for the
location of the dividing surface. Below, we discuss this in more detail.

2.2.3 The surface of tension

The pressure di�erence over the surface of a drop is a well-de�ned quantity, which is
insensitive to the choice of the location of the dividing surface. It then follows from
the generalized Laplace equation, i.e. Eq. (2.9), that, in general, 
 must formally be a
function of R. Following Gibbs [3] we now de�ne the surface for which�

@


@R

�
Rs

= 0 (2.14)

to be the surface of tension. It is only for this dividing surface that the generalized
Laplace equation reduces to

p� � p� =
2
s
Rs

; (2.15)

where the subscript s denotes that we consider the surface of tension.
The complete dependence of 
 on R can easily be obtained. Using the above equation

and Eq. (2.8) for R = Rs (with 
(Rs) � 
s), we can write � in terms of Rs and 
s:

� =
1

3

sR

2
s �

1

3
R3
�p� +

1

3
R3
�p� (2.16)

Substituting the expression for � in Eq. (2.8) and writing p� � p� in terms of 
s and Rs

gives


 =
R2
s
s

3R2
+
2
sR

3Rs

:

= 
s

(
1 +

(R�Rs)
2

R2
s

+O
�
R�Rs

Rs

�3
)
:

(2.17)

In Fig. 2.2 we have plotted, for a given droplet, 
 as a function of the position of the
dividing surface denoted by R. It is seen that the surface tension 
 exhibits a minimum
at the surface of tension. Note also that from the last line in the above equation it
follows that, as long as the thickness of the interface is small compared to the size of the
droplet, 
 is close to the minimum value 
s.
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2.2.4 Equimolar dividing surface

Before we discuss the equimolar dividing surface, let us �rst consider the free energies
of the phases � and �. We de�ne the free energies to be

F� = �p�V� + �N�;

F� = �p�V� + �N�;
(2.18)

where N� and N� are the number of particles in phase � and �, respectively. We can then
obtain the surface free energy Fs by subtracting the free energies of the \homogeneous"
phases � and � from the total free energy F , as given in Eq. (2.7):

Fs = 
A+ �Ns; (2.19)

where we have used that N = N� + N� + Ns, with Ns the number of particles at the
dividing surface. Note also that we have exploited the fact that at the top of the barrier
the droplet is in equilibrium with the vapor, so that the chemical potential is uniform
throughout the system. Now the surface for which Ns is zero is called the equimolar

dividing surface. The equimolar dividing surface is not only convenient because Ns is
zero, it is also useful because for this (and only this) dividing surface the change in the
surface tension due to an actual change of the radius of the droplet (which, in general,
is associated with some change in p� and p�), is equal to the change in surface tension
due to a mathematical displacement of the location of the dividing surface (in which the
physical conditions are unaltered). That is,�

@


@R

�
R=Re

=

�
@
e
@Re

�
T

: (2.20)

The above relation can easily be derived from the Gibbs-Duhem relation for the interface.
This is shown in appendix A.

2.2.5 Curvature dependence of surface tension

2.2.5.1 Tolman length The Tolman length is an important quantity as it describes
the �rst-order curvature correction to the surface tension. The Tolman length is de�ned

Rs

Rs

γs

γ

Figure 2.2 The surface
tension 
 as a function of
R, as given by Eq. (2.17).
The surface for which 
 pos-
sesses a minimum is called
the surface of tension.
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as the di�erence � between the radius of the surface of tension and the radius of the
equimolar dividing surface:

� = Re �Rs: (2.21)

The Tolman-length can be related to the super�cial density �s = Ns=As at the surface of
tension. It follows from the Gibbs-Duhem relations for the interface and the two phases
� and � that this super�cial density determines the variation of the surface tension with
droplet size.

At constant temperature and at the surface of tension, the Gibbs-Duhem relation
(see appendix A) reduces to

d
s = ��sd�: (2.22)

The Gibbs-Duhem relations for the homogeneous phases � and �, are, for isothermal
variations,

d� =
dp�
��

=
dp�
��

(2.23)

where �� and �� are the densities of the liquid and gas phase. Combing Eqs. (2.22)
and (2.23) gives

d
s = ��s
��
dp� = ��s

��
dp� = � �s

�� � ��
d(p� � p�): (2.24)

The pressure di�erence p� � p� can be related to the surface tension via the Laplace
equation. This yields

1


s

d
s
dRs

=
[2=R2

s][�s=(�� � ��)]

1 + [2=Rs][�s=(�� � ��)]
: (2.25)

As shown in appendix B, the super�cial density is related to the Tolman-length via

�s = (�� � ��)�[1 + (�=Rs) +
1

3
(�2=R2

s)]: (2.26)

We can substitute this expression into Eq. (2.25) and integrate it with respect to Rs,
which can be taken as an independent state variable. Neglecting the terms �=Rs and
�2=3R2

s, that are usually small in comparison with unity, and taking � to be constant,
we can easily carry out the integration and arrive at the well-known Tolman formula


s(Rs)


1
=

Rs

Rs + 2�
: (2.27)

The above equation allows us to write the Laplace equation in terms of the radius
of the equimolar dividing surface and the surface tension of the planar interface. This
is useful, because the computation of the position of the surface of tension is more
cumbersome than that of the equimolar dividing surface, as the position of the equimolar
dividing surface, in contrast to that of the surface of tension, can be obtained from the
density pro�le of the droplet. Moreover, the surface tension of a planar interface is more
easily determined than the surface tension of a droplet in a supersaturated vapor. From
Eqs. (2.15), (2.21) and (2.27) it follows that

�p =
2
s
Rs

=
2
1

Rs + 2�
=

2
1
Re(1 + �=Re)

: (2.28)
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In order to arrive at Eq. (2.27), we have neglected terms of �=Rs and higher. It is
therefore natural to expand 1=(1 + �=Re) up to �rst order to arrive at

�p =
2
1
Re

�
1� �

Re

�
: (2.29)

The above equation gives the pressure di�erence in terms of the equimolar dividing
surface and in terms of the surface tension of the planar interface, modi�ed by a �rst-
order correction \due to" the Tolman-length.

2.2.5.2 Helfrich equation In general, the surface free energy of a curved interface
depends on the two principal radii of curvature R1 and R2. Helfrich [44] introduced the
following expansion of the surface free energy in the inverse radii of curvature:


(R1; R2) = 
1 � k

2
C2
0 +

k

2

�
1

R1

+
1

R2

+ C0

�2

+ k
1

R1R2

; (2.30)

where 
1 is the surface tension of the planar interface, C0 is the spontaneous curvature,
k is the bending rigidity constant, and k is the rigidity constant associated with Gaussian
curvature. From Eq. (2.30) it follows that for spherical interface with R1 = R2 = R the
surface free energy is given by


(R) = 
1 + 2kCo

1

R
+ (2k + k)

�
1

R

�2

; (2.31)

and its derivative with respect to R by

@


@R
= �2kCo

�
1

R

�2

� 2(2k + k)

�
1
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�3

: (2.32)

In the previous sections we have seen that the de�nition of the radius of the droplet
is ambiguous. We will identify R with the radius of the equimolar dividing surface,
i.e. R = Re and 
 = 
e. In section 2.2.4 we derived that for this dividing surface the
notational derivate of the surface tension with respect to R equals the actual derivative.
Hence, the Laplace equation becomes

�p =
2
e
Re

+

�
@


@R

�
Re

=
2
e
Re

+
@
e
@Re

=
2
1
Re

+ 2kCo

�
1

Re

�2

: (2.33)

By comparing this equation with Eq. (2.29), we �nd that the Tolman-length is given by

� = �kC0


1
: (2.34)

This formula shows that the Tolman-length is determined by the bending rigidity, the
surface tension and the spontaneous curvature. The Tolman-length has been calculated
both theoretically and numerically for the vapor-liquid interface in the Lennard-Jones
system [45{47]. The studies indicate that the Tolman-length is close to zero. In chapter 5
we present a new numerical method by which the Tolman-length can be computed. We
also �nd that the Tolman-length is zero within the numerical accuracy. Provided that the
bending rigidity is non-zero, it is clear that this implies that the spontaneous curvature
for the Lennard-Jones vapor-liquid interface is zero.
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liquid

vaporIII

vapor
(β)

(β)

(α)

Figure 2.3 The formation of a nucleus from the parent phase. Initially,
in state I, the system only contains a homogeneous parent phase. In state
II the system contains a cluster in equilibrium with the parent phase. The
free-energy barrier is given by the di�erence in Gibbs free energy between
the two states. As an illustration, the parent phase � is the vapor phase
and the new phase � is the liquid phase.

2.2.6 General expressions for the height of the nucleation barrier

We have now reached the point that we have obtained all the required relations to derive
some useful expressions for the height of the nucleation barrier. In most nucleation
experiments the volume and temperature are �xed and nucleation of clusters from the
parent phase leads to a decrease of the pressure. However, the concentration of nuclei
is usually so small that the drop in pressure is negligible. This means that not only the
temperature, but also the pressure and chemical potential e�ectively remain constant
during the nucleation process. In order to determine the height of the nucleation barrier,
we therefore have to calculate the change in (Gibbs) free energy when a critical cluster
of the new phase is formed at constant pressure and temperature.

Consider the two states of the system depicted in Fig. 2.3. Initially, in state I, the
system only contains the parent phase � (say vapor). In state II the system contains a
critical nucleus of the new phase � (say liquid) in (unstable) equilibrium with the parent
phase �. Now the height of the nucleation barrier is given by the di�erence in Gibbs free
energy between these two states. Let us �rst determine the di�erence in internal energy

�U = U II � U I: (2.35)

The internal energy of system I is given by

U I = T ISI � pIV I + �IN; (2.36)

whereas the internal energy of system II is given by Eq. (2.6),

U II = T IISII � pII�V
II
� � pII� V

II
� + 
A+ �IIN:

= T IISII + (pII� � pII� )V
II
� � pII� V

II + 
A+ �IIN:
(2.37)

As the nucleus is formed at constant pressure and temperature, we have pI = pII� = p,

T I = T II = T and �I = �II = �. Then the di�erence in internal energy is given by

�U = T�S + (p� pII�)V
II
� + 
A� p�V; (2.38)
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where �S = SII � SI and �V = V II � V I. We now immediately �nd for the Gibbs free
energy di�erence and hence for the nucleation barrier

�G = �U + p�V � T�S = (p� pII�)V
II
� + 
A: (2.39)

Note that this equation holds for every dividing surface and that no approximations
are made concerning the compressibility of the liquid or the surface tension. If we now
take for the dividing surface the surface of tension, then, by making use of the Laplace
equation, the height of the barrier is given by

�G =
4

3
�R2

s
s =
2

3
�pR3

s: (2.40)

In chapter 5 we show how using these the relations the surface tension and the radius
of the surface of tension can be obtained from the measured barrier height.

2.3 Classical nucleation theory

In the previous section we derived an expression for the height of the nucleation barrier,
written in terms of the surface tension and surface of tension. However, in general, it is
di�cult to determine these quantities. In particular, the only condition under which the
surface tension can be measured experimentally, is at coexistence. One therefore has to
make assumptions.

In this section we discuss classical nucleation theory, which is based on macroscopic
thermodynamics. Classical nucleation theory (CNT) was originally developed more than
half a century ago by Volmer and Weber [4], Becker and D�oring [5], Zeldovich [48] and
Frenkel [49]. We �rst derive the predictions of classical nucleation theory for the nucle-
ation barrier and critical-nucleus size. We then indicate how the equilibrium distribution
of cluster sizes is obtained. Finally, we derive the expressions for the rate of nucleation.

2.3.1 Nucleation barrier

We start by considering the change in Gibbs free energy when a nucleus of phase �
(liquid) is formed from the parent phase � (vapor), at constant temperature and pressure
(see Fig. 2.3).

The internal energy of the system in state I is given by Eq. (2.36). Concerning the
system in state II, we will assume that the temperature is uniform, i.e. T II

� = T II
s = T II

� .
However, as we will not only consider critical droplets, we do not assume beforehand
that the chemical potentials are uniform in system II. So we have for the internal energy
of the system in state II

U II =T IISII � pII�V
II + (pII� � pII� )V

II
� + 
A+

(�II� � �II� )N
II
� + (�IIs � �II� )N

II
s + �II�N:

(2.41)

As we consider a transformation at constant temperature and pressure, i.e. T I = T II

and pI = pII� = p, we have �II� = �I. We then obtain for the change in free energy

�G = (p� pII� )V
II
� + 
A+ (�II� � �II� )N

II
� + (�IIs � �II� )N

II
s : (2.42)

Note that �G does not have to correspond to the top of the barrier. From now on,
we denote the top of the nucleation barrier by an asterix. In order to obtain a useful
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expression for �G, we have to make assumptions. In classical nucleation theory it is
assumed that

1. the nucleus is spherical;
2. the phase in the nucleus is characterized by bulk properties;
3. the phase in the nucleus is incompressible;
4. the surface tension is independent of R, the radius of the droplet. This implies

that the Gibbs adsorption at the surface of tension is zero and that the Tolman
length is zero (see Eq. (2.26) and Eq. (2.27)). Thus we have that the surface of
tension is equal to the equimolar dividing surface, i.e. Rs = Re.

The mathematical dividing surface will now be put at the equimolar dividing surface (or
equivalently, at the surface of tension), i.e. R = Re = Rs. This implies that N II

s = 0.
The excess free energy is then

�G = (p� pII� )
4

3
�R3 + 
14�R

2 + [�II� (p
II
� )� �II� (p

II
� )]N

II
� : (2.43)

As the droplet is assumed to be incompressible we have

�II� (p
II
� ) = �II� (p

II
� ) +

1

��
(pII� � pII� ): (2.44)

We then obtain for the excess free energy

�G = 4�R2
1 +
4

3
�R3����; (2.45)

with ��

�� = �II� (p
II
� )� �II� (p

II
� ): (2.46)

Note that the chemical potential of the phase � in the nucleus has to be evaluated at
the pressure of the vapor phase.

We can now take the derivative of Eq.2.45 with respect to R to obtain for the
maximum of the free-energy barrier

R� =
2
1
����

; (2.47)

�G� =
16�
3

1

3�2���
2
: (2.48)

By combining Eq. (2.47) with Eq. (2.44) we �nd the Laplace equation within classical
nucleation theory:

�p =
2
1
R�

: (2.49)

2.3.2 Equilibrium distribution of cluster sizes

In the previous section we discussed the di�erence in Gibbs free energy between a system
consisting of only vapor molecules (phase �) and a system containing one liquid cluster
(of phase �) surrounded by vapor molecules. Now imagine that the number of particles
in the liquid cluster, which we from now on denote by n, is equal to the total number
of particles N in the respective systems, i.e. n = N . Then, obviously, in state II, the
system only contains one liquid cluster and no vapor molecules. But the important point
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to note is that we can now identify the Gibbs free energy of the system in state II with
the chemical potential of the liquid cluster, i.e. GII = �n(p; T ). Hence, we have

�GCNT = GII �GI = �n(p; T )� n�1(p; T ); (2.50)

where �1(p; T ) is the chemical potential of monomers at pressure p and temperature T
and GII is

GII = 
A+N II
� �

II
� (p�) = 
A+ n��(p; T ): (2.51)

We are now able to compute the equilibrium distribution of cluster sizes in a metastable
supersaturated vapor. We will assume that the concentration of clusters is so low that
the interactions between them can be ignored. This means that we can consider an ideal
gas mixture of clusters and monomers. We treat the clusters of di�erent sizes as separate
species, so that the system is a mixture consisting of N1 monomers, N2 dimers,..., Nn

n-mers, and so on. The mixture is at temperature T and at pressure p. After mixing,
every n-mer exerts a partial pressure pn, such that

P
1

n=1 pn = p. As the mixture is
considered to be ideal, the chemical potential of the di�erent clusters is given by

�n = �n(p; T ) + kBT ln[pn=p] = �n(p; T ) + kBT ln[Nn=Nt]; (2.52)

where kB is Boltzmann's constant and Nt =
P

1

n=1Nn is the total number of clusters.
The total Gibbs free energy of the mixture is given by

GCNT =

1X
n=1

Nn f�n(p; T ) + kBT ln[Nn=Nt]g =
1X
n=1

Nn�n(p; T )� TSmix;

(2.53)

where Smix = �kB
P

1

n=1Nn ln[Nn=Nt] is the entropy of mixing the clusters. We can
now obtain the cluster distribution from the equilibrium condition

�n = n�1: (2.54)

Combining Eqs. (2.50), (2.52) and (2.54), and exploiting the fact that, to a good ap-
proximation, the total number of clusters is given by the number of monomers, we �nd

exp[���GCNT (n)] =
Nn=Nt

(N1=Nt)
n =

Nn

N1

; (2.55)

which is simply a Boltzmann distribution. The monomers are often in large excess,
which gives N1 = N . We can then de�ne an intensive probability

P (n) � Nn

N
= exp[���GCNT (n)] (2.56)

In chapters 4{9 we show how we can calculate the cluster size distribution P (n) by
computer simulation. In the simulations, we de�ne the free energy of a nucleus by its
probability P (n):

��Gsim(n) � � ln[P (n)]: (2.57)

Hence, using computer simulations its not only possible to study pathways for homoge-
neous nucleation, but also to compute free energy barriers which can be compared with
theory.
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2.3.3 Nucleation rate

Thus far we have not discussed the kinetics of nucleation. In order to calculate the
nucleation rate, we again have to make several assumptions. First of all, we assume
that clusters grow or shrink via the attachment of single molecules. This should be a
reasonable assumption for gas-liquid nucleation as the concentration of monomers greatly
exceeds that of even the dimers, and the collisions between clusters is expected to be
rare. For crystal nucleation from the melt it is less obvious that the growth of a clusters
proceeds via the attachment of single molecules. Making this assumption, the net rate
at which nuclei containing n monomers become nuclei containing n + 1 monomers is
then

kn(t) = fnNn(t)� bnNn+1(t); (2.58)

where Nn(t) denotes the time dependent number of clusters of size n, fn denotes the
forward rate at which a cluster gains particles, and bn denotes the backward rate at
which a cluster looses particles.

When a vapor is supersaturated, �rst a new cluster distribution has to be established.
We can expect however, that after a transient time � , the system reaches a steady-state
in which the cluster distribution no longer changes with time and the nucleation rate is
constant. The solution of Eq. (2.58), obtained by recurrence from Eq. (2.58) [7], is then

k = N1

"
1X
i=1

1

fn�n

#
�1

; (2.59)

with �n

�n =

n�1Y
j=1

fn
bn+1

; n > 1: (2.60)

The rate constants are independent of whether the system is in equilibrium or not.
We can then associate the ratio of products of rate constants in Eq. (2.60) with the
equilibrium constant K for the following reaction

nN eq
1  ! N eq

n : (2.61)

We already know the equilibrium constant for this reaction, as it is precisely given by
Eq. (2.55). Hence, Eq. (2.59) becomes

k = N1

"
1X
n=1

1

fn exp[���GCNT (n)]

#
�1

: (2.62)

We now have to make somemathematical approximations to obtain the �nal solution.
The terms corresponding to nuclei near the top of the barrier dominate the sum in
Eq. (2.62). We therefore expand the free energy in a Taylor series about its maximum
at n = n�. Truncating the series after the second-order term and replacing the sum by
an integral, we �nd [7]

k =

s
j�GCNT (n�)j00

2�kBT
fn�N1 exp[���GCNT (n

�)]; (2.63)
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where j�GCNT (n
�)00j is the second derivate of the Gibbs free energy �GCNT (n) with re-

spect to cluster size n, evaluated at the top of the barrier. The factorp
j�GCNT (n�)j00=2�kBT is called the Zeldovich factor [48]. It relates the steady-state

cluster distribution to the equilibrium cluster distribution. In classical nucleation theory
it can be obtained from Eq. (2.45), yielding

k =

s
j��j
6�kBT

fn�N1 exp[���GCNT (n
�)]: (2.64)

This is the general expression of classical nucleation theory for the nucleation rate. One
can interpret it is as follows: the rate of nucleation is given by the number of nuclei at the
top of the barrier (N1 exp[���GCNT (n

�)]) times the rate at which they cross the barrier
(fn�), times a correction factor (the Zeldovich factor) that takes care of the fact that
some nuclei that cross the barrier do not end up in the �nal state, but recross the barrier
to the initial state. In chapters 3 and 6 we numerically determine the kinetic prefactors
for crystal nucleation from the melt and for gas-liquid nucleation in a Lennard-Jones
system. We �nd that the kinetic prefactor in the case of crystal nucleation is about two
orders of magnitude larger and in the case of gas-liquid nucleation about one order of
magnitude larger than predicted by classical nucleation theory.

2.4 Extensions of classical nucleation theory

Nucleation experiments indicate that classical nucleation theory does not correctly pre-
dict the nucleation rate. However, in recent experiments on gas-liquid nucleation it has
been observed that this theory does accurately predict the critical-nucleus size [15, 50, 51].
Moreover, in these experiments it has been found that the ratio of the experimentally
determined nucleation rates and the rates as predicted by classical nucleation theory,
while depending on temperature, are only weakly dependent on supersaturation [51].

Recently, McGraw and Laaksonen [12, 13] derived relations for the nucleation bar-
rier that could provide an explanation for these observations. Below we discuss their
derivation which is based on the droplet model as introduced in section 2.2.1. We will
refer to this model as the di�use droplet model. This is contrast to the capillary droplet
model in CNT, which assumes a sharp interface.

The starting point for the derivation is the generalized Laplace equation, i.e. Eq. (2.9).
The pressure di�erence over the drop is a well-de�ned quantity that is not only insensi-
tive to the location of the dividing surface, but also independent of which model is used
to represent the drop. We therefore have

�p =
2
s
Rs

=
2
e
Re

+
@
e
@Re

=
2
1
R�

CNT

: (2.65)

The �rst equality is given by Eq. (2.15), the second is obtained by combining Eqs. (2.9)
and (2.20), and the third equality is the classical Laplace equation, as shown in Eq. (2.49).

The key assumption of the analysis by McGraw and Laaksonen [13] is that CNT
correctly predicts the location of the equimolar dividing surface. They therefore make
the Ansatz

Re = R�

CNT : (2.66)



30 Thermodynamics of small droplets

Then from Eq. (2.65) it follows that


1 = 
e +
Re

2

@
e
@Re

; (2.67)


1
Re

=

s
Rs

: (2.68)

We can now integrate Eq. (2.67) at constant temperature to arrive at

R2
e
e = R2

e
1 + ks(T ): (2.69)

We can now rewrite the above expression to obtain the curvature dependence of the
surface tension 
e


e = 
1 +
ks
R2
e

: (2.70)

It is seen that the surface tension at the equimolar dividing surface is given by the
surface tension of the planar interface plus a curvature correction that is proportional
to ks. We therefore identify ks with the bending rigidity coe�cient. Note also that the
pair of conditions 
e = 
1 and @
e=@Re = 0 assumed in CNT arise as a special case for
which ks = 0.

We can now evaluate Eq. (2.17), which gives the dependence of 
(R) on the location
of the dividing surface, at R = Re, and use Eq. (2.68) to eliminate 
s, to obtain


1 =
3
eR

3
e

R3
s + 2R3

e

: (2.71)

The nucleation barrier in the di�use droplet model is given by Eq. (2.40), which, using
Eq. (2.68) and Eq. (2.71), can be rewritten as

�G� =
4�R2

s
s
3

= 4�R2
e
e

�
R3
s

R3
s + 2R3

e

�
: (2.72)

In the capillary droplet model of CNT we obtain

�G�

CNT =
4�R2

e
1
3

= 4�R2
e
e

�
R3
e

R3
s + 2R3

e

�
: (2.73)

The �rst equality is obtained by combining Eqs. (2.47) and (2.48), after applying the
Ansatz Re = R�

CNT . The second equality uses Eq. (2.71).
We can now subtract the two above equations to arrive at

�G�

CNT ��G� = 4�R2
e(
1 � 
e) = �4�ks(T ): (2.74)

Hence, by assuming that CNT correctly predicts the location of the equimolar dividing
surface, we �nd that the di�erence between the actual barrier height and the height of
the barrier as predicted by CNT, is independent of supersaturation and only dependent
on temperature. As the variation in the nucleation rate is dominated by the variation
in the barrier height, it implies that the ratio of the actual nucleation rate over the
nucleation rate as predicted by classical nucleation theory, is constant.
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Let us now discuss the main assumption leading to Eq. (2.74). The starting point
for the above derivation is the Ansatz RCNT = Re. From Eq. (2.65) it is seen that this
means that

�p =
2
1
Re

: (2.75)

However, in section 2.2.5.1 we have shown that the Laplace pressure, written in terms
of Re and 
1, is to �rst order

�p =
2
1
Re

�
1� �

Re

�
: (2.76)

A comparison of the two above equations shows that McGraw and Laaksonen have
implicitly assumed that the Tolman-length, and hence the spontaneous curvature, is
zero. In chapter 5 we show that this, in fact, is a reasonable assumption for the vapor-
liquid interface in the Lennard-Jones system. Note also that, by comparing Eq. (2.70)
with Eq. (2.31), the bending-rigidity constant ks can be identi�ed with ks = 2k + k

Finally, let us discuss some of the main problems of classical nucleation theory that
have been under debate since the 1960's. It is clear that the use of macroscopic quantities
has both it advantages and disadvantages. However, even if we accept the approxima-
tions of classical nucleation theory, there are still inconsistencies within the theory, which
we now brie
y address. Already in 1961 Courtney argued that the CNT-prediction for
the cluster distribution (see Eq. (2.55)) does not satisfy the law of mass action [52], and
suggested that this problem could be resolved by introducing the factor 1=S, where S
is the supersaturation, into Eq. (2.55). Although the factor 1=S does bring CNT into
line with the law of mass action, its introduction seems rather ad hoc [53]. Moreover,
Lothe and Pound realized that a more fundamental omission in the original theory still
persists [54]. They argued that classical nucleation theory does not properly take into
account the mechanical and rotational degrees of freedom of a cluster. This problem is
now often referred to as the problem of the \replacement free energy". Both problems
have been the subject of controversy.

The root of the problems lies in the fact that the connection between a statistical
mechanical description of droplets and a macroscopic thermodynamic theory, such as
classical nucleation theory, is ambiguous. From statistical mechanics it follows that the
free energy of an ideal mixture of clusters is given by

F = �kBT
1X
n=1

Nn[ln(Qn)� lnNn + 1]; (2.77)

where Qn is the partition function of an n-mer. The chemical potential of an n-mer can
be obtained via

�n =

�
@Fn
@Nn

�
V;T;N

n
0 6=n

= �kBT ln[Qn=Nn]: (2.78)

From the law of mass action 2.54 it then follows that

Nn = exp[��(�kBT ln[Qn]� n�1)] � exp[��(Fn � n�1)]: (2.79)
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Now the basic problem is how to express the con�guration integral in terms of macro-
scopic thermodynamic quantities. Recently, Reiss et al. [11] argued that the con�gura-
tional integral should be given by

Qn = (V=vo) exp[��(GII � pvn=kBT )]

= (V=vo) exp[��(n�� + 
A� pvn=kBT )];
(2.80)

where vn is the volume of the droplet and vo is the volume scale for the droplet. In the
analysis of Ref. [11] vo is given by vo = �vn, where �vn is the variance of the volume

uctuations of the droplet. The introduction of vo implies that the free-energy of such a
droplet is given by the CNT-prediction plus a contribution associated with the transla-
tional degrees of freedom of the cluster minus a correction term which corrects for double
counting con�gurations. Thus vo plays a role in resolving states in coordinate space sim-
ilar to that of Planck's constant in phase space. The e�ect on the expression for the
cluster distribution in Eq. (2.55) is that Nn=N1 is now given by exp[���GCNT ]=�vn��,
which implies a correction of the order 104. At the moment it seems that these issues
are still not settled and we will not address them in more detail here.

2.5 Nucleation theorem

The formation of critical nuclei is infrequent. But when clusters are formed, they are
also short-lived. It is for these reasons that it is di�cult to study the structure of
critical nuclei in any direct way in an experiment and for many years most experimental
nucleation studies only provided information about the nucleation rates and critical
supersaturations, but not about the structure of the critical nuclei. But in recent years it
has been noticed by Kashchiev and others [15, 55{57] that the variation of the nucleation
rate with supersaturations does contain information about the size and composition of
the critical nucleus. The connection is made via the so-called nucleation theorem. The
nucleation theorem states that the excess number of molecules of a given component
in the critical nucleus is given by the variation of the barrier height with the chemical
potential, �v;i of that component in the vapor phase:

@�G�

@�v;i
= ��n�i : (2.81)

Here �n�i is the excess number of particles of component i in the critical droplet. The
excess number of particles is given by

�ni = 4�

Z
1

0

[�(r)� �v]r
2dr; (2.82)

where �(r) is the density in a spherical shell at distance r from the center of the droplet
and �v is the density in the vapor. While the size of the nucleus is ambiguous because
of the di�usive nature of the interface, the excess number of particles is well-de�ned.

In the literature both thermodynamic [55, 56] and statistical mechanical [15] deriva-
tions have been reported. In appendix C we present a derivation that is based on a
thermodynamical derivation given by Oxtoby and Kashchiev [56]. However, it is con-
ceivable that a thermodynamic approach fails for small droplets. Here we therefore
present a compact derivation which is based on statistical mechanics.
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Consider a system in the grand-canonical ensemble. The probability to �nd n parti-
cles in the system is given by

P (n) = exp(��n)Q(n; V; T )=�(�; V; T ) ; (2.83)

where � is the grand-canonical partition function. The total grand potential 
 (=�PV )
is given by


 = �kBT ln � : (2.84)

We can associate a Landau free energy (strictly speaking, a Landau \grand potential")
!(n) with the probability distribution P (n)

!(n) = �kBT ln [exp(��n)Q(n; V; T )] = ��n+ F (n; V; T ) (2.85)

where F (n; V; T ) is the Helmholtz free energy of a system of n particles in volume V at
temperature T . The free energy di�erence between two states with di�erent number of
particles, say n1 and n2, is

�! � !(n2)� !(n1) =� �(n2 � n1) +

F (n2; V; T )� F (n1; V; T ) :
(2.86)

Let us now consider how �! varies with �. Note that the Helmholtz free energy does
not depend on �. Hence

@�!

@�
= �(n2 � n1) � ��n : (2.87)

This result is general. Hence it also holds for the case where n1 corresponds to the (local)
maximum of P (n), i.e. the homogeneous metastable phase, while n2 corresponds to the
top of the (nucleation) barrier. In that case, it is immediately clear that �n corresponds
to the excess number of particles in the critical nucleus. The extension to mixtures is
straightforward.

In a sense, this result is trivial. It is easy to extend it to other ensembles. Consider
�rst the N;P; T ensemble. In that case, the 
uctuating quantity is the volume, the
Landau free energy has the form of a Gibbs free energy and we obtain

@�g

@P
= (V2 � V1) � ��V : (2.88)

Hence the variation of the barrier height with pressure is given by the (usually negative)
excess volume of the critical nucleus. However, although that quantity is well de�ned,
it is intuitively not very appealing. Of course, if we use the Gibbs-Duhem relation to
write dP = �d�, then Eq. (2.88) reduces to Eq. (2.87).

Finally, consider a variation in temperature, rather than pressure or chemical poten-
tial. Then, for both the grand-canonical and the isothermal-isobaric ensemble we obtain
the same results:

@�g

@T
= �(S2 � S1) � ��S : (2.89)

and

@��g

@�
= (E2 � E1) � �E : (2.90)
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It is worth pointing out that, in practice, the observable quantity is ��G, and hence
the second relation is more useful.

Note that although �n in Eq. (2.87) is a useful order parameter for small systems, it
becomes less meaningful for larger systems. To be more speci�c, it becomes meaningless
if the volume V is so large that the spontaneous 
uctuations in the number of particles
become comparable to �n. In general,

hN2i � hNi2 = NkBT�

where � denotes the isothermal compressibility. For an ideal gas,

hN2i � hNi2 = N

Hence, a problem arises when n�nucleus is of order
p
N . When this happens, the change

in free energy associated with a small, homogeneous 
uctuation in the density is smaller
than the change in free energy due to the formation of a liquidlike droplet and �n is
no longer a useful order parameter. Note that this situation can always arise when
the volume is large enough and that it becomes even more serious close to the critical
point or close to the spinodal. However, in practice, the problem is less serious because
nucleation experiments do not probe the probability of arbitrary density 
uctuations
but only those that result in the formation of a critical nucleus.

Appendix A Gibbs-Duhem relations for the interface

The variations in the free-energy of the homogeneous phases � and � are given by

dF� = �p�dV� � S�dT + �dN�;

dF� = �p�dV� � S�dT + �dN�:
(2.91)

Subtracting these equations from Eq. (2.12) yields for the variation of the surface free
energy

dFs = �SsdT + 
dA+ �dNs +

�
d


dR

�
AdR: (2.92)

The Gibbs-Duhem relation for the interface is obtained by di�erentiating the expression
for the surface free energy Fs (i.e. Eq. (2.19)) and combining the result with Eq. (2.92).
We �nd

Ad
 + SsdT +Nsd� =

�
d


dR

�
AdR; (2.93)

or,

d
 + ssdT + �d� =

�
d


dR

�
dR; (2.94)

where ss and � are the super�cial entropy density and number density, respectively.
At the equimolar dividing surface, � is zero, from which immediately follows that�

@


@R

�
R=Re

=

�
@
e
@Re

�
T

: (2.95)
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Appendix B Tolman-length and super�cial density

In this appendix we show how the Tolman-length, which is de�ned as the di�erence
� = Re �Rs, is related to the super�cial density �s at the surface of tension.

The number of surface molecules at the surface of tension is

Ns(Rs) = 4�

Z Rs

0

(�(R)� ��)R
2dR + 4�

Z Rmax

Rs

(�(R)� ��)R
2dR: (2.96)

The number of surface of molecules at the equimolar dividing surface is

Ne(Re) = 0 =4�

Z Re

0
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2dR + 4�
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(�(R)� ��)R
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2dR +

4�

Z Rmax

Rs
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(�(R)� ��)R
2dR:

(2.97)

Combining both the above equations we obtain

Ns(Rs) = 4�

Z Re

Rs

(�� � ��)R
2dR

= 4�(�� � ��)(R
3
e � R3

s);

(2.98)

and for the super�cial density at the surface of tension

�s =
Ns

4�R2
s

= (�� � ��)
R3
e �R3

s

R2
s

= (�� � ��)�[1 + (�=Rs) +
1

3
(�2=R2

s)]:

(2.99)

The above equation becomes more transparent when we consider the planar limit. For
a planar interface, for which Rs goes to in�nity, we have

�s=(�� � ��) = �: (2.100)

Appendix C The nucleation theorem

In this appendix we give a thermodynamic derivation of the nucleation theorem. It is
based on the derivation presented by Oxtoby and Kashchiev [56].

The height of the nucleation barrier is given by the di�erence in Gibbs free energy
between the two systems in Fig. 2.3:

�G = (p� pII� )V
II
� + 
A: (2.101)

In order to derive the nucleation theorem we have to evaluate @�G
@�

. V II
� ; A; p

II
� , and pII

are a function of �. The surface free energy is a function of both R and �. In principle,
they are independent, i.e. at constant �, we could make a mathematical displacement
of R, leading to a change in 
. However, when the chemical potential is changed, it is
natural to follow one and the same surface, for instance the surface of tension, or the
equimolar dividing surface. Then R is a function of �, and we have 
(R(�); �).
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For the variation in �G with respect to a variation of � we now get

@�G

@�
=
@V II

�

@�
(p� pII� ) + V II

�

@(p� pII� )

@�
+ 


@A

@�
+ A

@


@�

����
R

+ A
@


@R

����
�

@R

@�

=� A
@R

@�

(
2


R
+

�
@


@R

�����
�

)
+ V II

�

@(p� pII� )

@�
+

2A

R


@R

@�
+ A

@


@�

����
R

+ A
@


@R

����
�

@R

@�

=V II
�

@(p� pII� )

@�
+ A

@


@�

����
R

=V II
�

@p

@�
� V II

�

@pII�
@�

+ A
@


@�

����
R

:

We now make use of the Gibbs-Duhem relations. For the center of the droplet and
for the parent phase � we have

V II
� dp

II
� = N II

� d�

V II
� dp

II
� = V II

� dp = N II
� d�;

(2.102)

from which we obtain

@pII�
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N II
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V II
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(2.103)

For the surface we have from Eq. (2.93)
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s d�; (2.104)

from which we obtain

d
 = �N
II
s

A
d�+

�
@


@R

�����
�

dR: (2.105)

From this it follows that the variation of 
 with respect to � at constant R is given by

the surface density of molecules N II
s

A
, i.e.

@
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A
: (2.106)

We now have for the variation of the height of the barrier �G with respect to �

@�G
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= V II

� �� � V II
� �� �N II

s

= ��V II
� (�� � ��) +N II

s

	
� ��n�;

(2.107)

where �n� is the excess number of particles in the critical cluster.



3 Rate of crystal nucleation in a

Lennard-Jones system at

moderate undercooling

We report a computer-simulation study of the rate of homogeneous crystal nucleation and
the structure of crystal nuclei in a Lennard-Jones system at moderate undercooling. The
height of the nucleation barrier has been determined using umbrella sampling, whereas the
barrier crossing rate is calculated using molecular dynamics simulation. The simulations
clearly show that the barrier crossing is a di�usive process. Nevertheless, the kinetic
prefactor in the nucleation rate is found to be some two orders of magnitude larger than
predicted by classical nucleation theory. The height of the barrier is in good agreement
with the theoretical prediction. Although the Lennard-Jones system has a stable face-
centered cubic (fcc) phase below the melting line, the precritical nuclei are found to be
mainly body-centered cubic (bcc) ordered. As they grow to their critical size, they become
more fcc ordered in the core. However, the critical and postcritical nuclei retain a high
degree of bcc ordering in the interface. Furthermore it is found that in the interface the
density falls of faster than the structural order parameter, which is in agreement with
the predictions of density functional calculations (P. Harrowell and D. W. Oxtoby, J.
Chem. Phys. 80, 1639 (1984)).

3.1 Introduction

At the end of last century Ostwald [2] formulated his so-called `step rule', which states
that the phase that is formed from the melt need not be the most stable phase, but rather
the phase that is closest in free energy to the liquid phase. Stranski and Totomanow [58]
reexamined this rule and argued that the nucleated phase is the phase that has the
lowest free-energy barrier of formation, rather than the phase that is globally stable
under the conditions prevailing. More recently Alexander and McTague [32] extended
the Landau free energy expansion to freezing transitions that are weakly �rst order and
concluded from general symmetry considerations that, in three dimensions, formation
of the body-centered cubic phase (bcc) phase is uniquely favored for simple 
uids. A
theoretical study by Klein and Leyvraz [59] also suggests that a metastable bcc phase
can easily be formed from the undercooled liquid. In experiments on rapidly cooled
metal melts, which have a stable face-centered cubic (fcc) phase below the melting line,
nucleation of a metastable bcc phase has been observed [60{62].

However, when the formation of metastable bcc nuclei was investigated on a mi-
croscopic scale using computer simulation, the picture that emerged was not fully in
agreement with the Alexander-McTague scenario. Although in some studies nucleation
of the metastable bcc phase was observed [17{19, 27], most studies found evidence for
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the formation of the stable fcc phase [20{25]. Of particular interest is a simulation study
by Swope and Andersen [25] of a one million particle Lennard-Jones system, which has a
stable fcc phase below the melting line. This study showed that although both bcc and
fcc crystallites are formed in the early stages of the nucleation process, only the fcc nuclei
grow and become postcritical. What should be stressed, however, is that they performed
their simulation at a very large degree of undercooling (of more than 40% with respect
to the melting temperature). At such a large degree of undercooling one should expect
the free-energy barrier to be quite small for essentially all possible crystalline phases. It
is therefore not obvious that crystal nucleation at large undercooling will proceed in the
same way as close to coexistence.

In the present work we study homogeneous nucleation in the Lennard-Jones system
for two di�erent pressures closer to the freezing point, i.e. at 20% supercooling. Rather
than using a \brute-force" approach where we wait for nuclei to form spontaneously, we
separate the problem into two parts: 1) the computation of the free-energy barrier for
crystal nucleation and 2) the computation of the rate at which this barrier is crossed. For
the computation of the free-energy barrier that separates the solid phase from the un-
dercooled liquid, we use the scheme developed by Van Duijneveldt and Frenkel [27]. The
rate at which this barrier is crossed is computed using the Bennett-Chandler scheme [28{
31]. The advantage of this approach is that it can be used even at small undercooling (i.e.
realistic) undercooling where the straightforward molecular dynamics approach will not
work, because the nucleation barrier diverges at coexistence. Moreover, the umbrella-
sampling technique [26] allows us to stabilize the critical nucleus and study its structure
in detail. For readers who are less interested in the technical details of the simulations,
the next section summarizes the main results.

3.2 Summary of results

Our simulations suggest that the small precritical nuclei have a bcc-like structure rather
than the stable fcc structure. However, as the crystallites grow to the critical size, their
cores become increasingly fcc ordered. Nevertheless, a high degree of bcc ordering in the
interface is retained. This may explain why in earlier simulations on small systems nu-
cleation of a metastable bcc phase was observed [17{19, 27], while in similar simulations
on larger systems the formation of the fcc nuclei was observed [20{25]. In the smaller
systems the critical nuclei will be so small that their structure is almost completely
surface dominated, leading to a high degree of bcc ordering.

Our simulations show that, although the density in the core of the critical nuclei is
slightly lower than the density in the bulk solid, the structural order parameter reaches a
bulk solid value in the core. The interface between the crystal nuclei and the surrounding
liquid is di�use { both the density and the structural order parameter decay smoothly
to a liquidlike value. Moreover, our simulations support the prediction from density-
functional theory [63] that the density falls o� faster than the structural order parameter.

We compare our numerical results with the predictions of classical nucleation theory
for the height of the barrier and the rate of barrier crossing. On the whole, the computed
barrier height is in quite good agreement with classical nucleation theory. The present
study clearly shows that the barrier-crossing is a di�usive process. This is in agreement
with the low Zeldovich factor given by classical nucleation theory. The simulations yield
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a kinetic prefactor that is two orders of magnitude larger than the one predicted by
classical nucleation theory. To our knowledge, the present simulations provide the �rst
\atomistic" calculation of a crystal-nucleation rate at moderate undercooling.

The rest of this chapter is organized as follows. In section 3.3 we describe the
numerical techniques to calculate the free-energy barriers and the nucleation rates. The
method of identifying solidlike particles and determining the crystal structure of the
nuclei is presented in section 3.4. In section 3.5 we give the computational details of the
simulation and in section 3.6 we discuss the results.

3.3 Numerical technique

3.3.1 Free-energy barriers

In order to compute the free-energy barrier that separates the liquid from the crystalline
phase, we should �rst de�ne a \reaction coordinate" that connects the two phases. It
is most convenient to choose as the reaction coordinate an, as yet unspeci�ed, order
parameter �, that is sensitive to the degree of crystallinity in the system. The Gibbs
free energy of the system, G, is a function of this order parameter [64]:

��G(�) = constant� ln[P (�)]; (3.1)

where P (�) is the probability per unit interval to �nd the order parameter around a
given value of �. Below the freezing point P (�) is strongly peaked around a �nite,
solidlike value of �, whereas above the freezing point P (�) will be peaked around a low,
liquidlike value. At coexistence P (�) is double-peaked and the area under the two peaks
should be the same. This expresses the fact that, at coexistence, the system is equally
likely to be in the solid or liquid phase.

In the isobaric-isothermal ensemble (NPT -ensemble) the probability P (�)d� that
the system has a value between � and � + d� is given by

P (�) =

R
dV
R
drN exp[��(U(rN) + PV )] �(�� �(rN))

QNPT
; (3.2)

where � � 1=kBT is the reciprocal temperature, T is the temperature , kB is the
Boltzmann constant, N is the number of particles, U(rN) is the potential energy of
the con�guration with coordinates rN , V is the volume, P is the applied pressure and
QNPT is the con�gurational part of the partition function. QNPT is given by

QNPT =

Z
dV

Z
drN exp[��(U(rN) + PV )]: (3.3)

As P (�) is an equilibrium property of the system it can be obtained both by Monte
Carlo (MC) and molecular dynamics (MD) simulations. In order for Eq. (3.1) to be
useful, one should compute P (�) for all values of � between the solid and liquid. In
particular, one should obtain an accurate measure of P (�) near the top of the nucleation
barrier. But this is precisely the point where P (�) will be very small. As a consequence,
Eq. (3.1) cannot be used to calculate G(�) in a conventional simulation. To circumvent
this problem and to obtain good statistics on P (�) for intermediate values of �, the
umbrella sampling technique of Torrie and Valleau [26] is used. The basic idea of this
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scheme is to bias the sampling of con�guration space in such a way that con�gurations
with a large free energy will be sampled frequently.

We can bias the sampling of con�guration space by adding a �ctitious potential to
the true potential-energy function of our model system. Clearly, the optimum choice for
the biasing potential would be �G(�), because in that case all values of � are sampled
with the same probability. But, of course, we do not know G(�) as it is precisely the
quantity that we wish to compute. The approach of Van Duijneveldt and Frenkel [27] and
Lynden-Bell et al. [65] was to construct the biasing potential step-by-step. An initial,
local, estimate of G(�) is obtained from an unbiased simulation of the liquid phase
(say). This estimate is then extrapolated to higher values of � and used to construct
the biasing potential for the next run (at higher values of the order parameter), and so
on. The disadvantage of this approach is that if simulations are performed on a large
system with a steep free-energy barrier, it becomes di�cult to obtain a good estimate
for the free-energy barrier. We therefore use a slightly di�erent approach in that we
chose our biasing potential W (�) to be a harmonic function of �:

W (�(rN)) =
1

2
k�(�(r

N)� �o)
2 (3.4)

The result of introducing such a potential is that in each run a certain window of values
of the order parameter will be sampled. Note that the width and \location" of this
window depend on k� and �o. The window will be wider if the harmonic constant k� is
smaller. By changing the center value of the harmonic potential, �o, we can change the
crystallinity in our system.

3.3.2 Nucleation rates

With umbrella sampling it is in principle possible to compute the free-energy barrier
that separates the liquid from the solid phase, but it does not provide us with any
dynamical information. In order to calculate the nucleation rate, we exploit the fact
that nucleation is an activated process and that the rate of nucleation can therefore
be considered as the product of two terms, namely, (1) the probability to �nd the
system at the top of the free-energy barrier to nucleation and (2) the rate at which this
activated state (a \transition state" in the Eyring picture of chemical reactions [66])
transforms into a stable crystalline phase. Denoting the transition state separating the
liquid from the solid state by ��, we consider con�gurations for which � < �� as liquid
and con�gurations for which � > �� as solid. We now apply standard linear-response
theory [67] to calculate chemical rate constants, to compute the actual transition rate
from the liquid to the solid state [29, 30]. This transition rate k(t) is given by [29]

k(t) =
h _��(�� ��)�[�(t)� ��]i

h�(�� � �)i
; (3.5)

where � is the Heaviside function. Eq. (3.5) is obtained under the assumption that the
actual time-scale on which crystallization takes place is very long compared to the time
that it takes a critical nucleus to move away from the top of the barrier. It should also be
noted that it is somewhat suspect to apply the (equilibrium) linear-response formalism
to a system that has been prepared far from equilibrium (namely, in the metastable
liquid phase). However, we consider an ensemble of systems, most of which will be in
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the crystalline state, while a small fraction will be in the metastable liquid. The linear-
response theory then tells us how the system relaxes after an initial, weak perturbation
has changed the number of systems in the metastable liquid phase. It is in the spirit of
the Onsager regression hypothesis [67] to assume that this relaxation rate is precisely
the crystallization rate that we are interested in.

In what follows, we make the assumption that the rate-limiting step in the crys-
tallization rate is the barrier crossing, rather than for instance, the subsequent crystal
growth. Therefore, we can identify the crystallization rate with the nucleation rate.

It is convenient to rewrite Eq. (3.5) as:

k(t) =
h�(�� ��)i

h�(�� � �)i

h _��(�� ��)�[�(t)� ��]i

h�(�� ��)i
= Po(�

�)R(t): (3.6)

It is seen that k(t) is the product of two contributions. The �rst contribution is Po(�
�),

which is given by

Po(�
�) =

P (��)R ��

0
d�P (�)

=
exp(��G(�))R ��

0
d�exp(��G(�))

: (3.7)

Noting that if � < �� the system is in the liquid state, it is clear that Po(�
�) is the

probability of �nding the system at the top of the barrier divided by the probability of
�nding it in the liquid state. It is an equilibrium quantity and can be measured both by
Monte Carlo and by Molecular Dynamics as indicated above.

The second contribution to k(t) is R(t), which gives the average 
ux over the top of
the barrier, provided that the system was prepared at the top of the barrier. R(t) is a
dynamical quantity and can only be measured by Molecular Dynamics. The basic idea to
separate the simulation into a calculation of the barrier height and a dynamic simulation
of trajectories starting at the top of the barrier, was formulated by Bennett [28] and
Chandler [29]. As explained in Ref. [67], the initial rate k(t ! 0+) corresponds to the
transition-state theory approximation for the rate constant:

kTST = lim
t!0+

k(t) =
h _��(�� ��)�[ _�]i

h�(�� � �)i
: (3.8)

Transition-state theory assumes that all trajectories initially heading from the top of the
barrier towards the solid state will indeed end up in the solid state and all trajectories
heading towards the liquid, will end up in the liquid. This assumption is only correct if
no trajectories recross the top of the barrier. In the present case, recrossing turns out
to be quite signi�cant and, as a consequence, we will �nd that k(t) decays to a value
that is much smaller than kTST . It is conventional to express the reduction of k(t) due
to recrossings in terms of the transmission coe�cient �, de�ned as:

� =
k(t)

kTST
=

R(t)

R(0+)
: (3.9)

As explained in the previous section, we use umbrella sampling to calculate the free-
energy barrier and hence, P (��). To compute the crossing rate R(t), we make use of
the so-called \blue-moon ensemble" technique of Refs. [30] and [31]. In this technique,
constrained MD simulations are used to generate a sequence of uncorrelated con�gura-
tions of the system under the constraint � = �� (i.e. at the top of the barrier). We use
conventional constraint-MD [68] to keep the system at the top of the barrier. However,
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it should be noted that the quantity that we constrain is a global order parameter that
depends on the positions of all the particles in the system. The con�gurations at the
top of the barrier that are generated in the constrained-MD simulations are then used
as initial states to compute the time correlation function in R(t). However, as explained
in Refs. [30, 31], the use of a constrained MD introduces a bias in the sampling of states
at the top of the barrier. It is possible to correct for this bias by giving the trajectories
starting from the top of the barrier an appropriate weight in the averaging:

R(t) =
h _��[�(t)� ��]jHj�1=2ic

hjHj�1=2ic
: (3.10)

The subscript c denotes that we are using a constrained initial state. In the general case
of a system with many constraints, jHj is the determinant of a matrix H. However, in
the present case, there is only one constraint and H reduces to a scalar:

H =

NX
i=1

m�1
i

�
@�

@~ri

�2

: (3.11)

The weighting factors in the ratio in (3.10) would cancel if the reaction coordinate �
were a linear function of the cartesian coordinates. However, in the present case, �
is a non-linear function of all coordinates and its in
uence cannot be ignored. More
computational details are discussed in Ref. [69].

3.3.3 Order parameters

Both for the calculation of the nucleation barrier and for the computation of the crossing
rate, we need to de�ne a \reaction" coordinate that measures the degree of crystallinity
of the system as it moves from the liquid to the solid phase. We have to choose as our
reaction coordinate an order parameter that is only sensitive to the overall degree of
crystallinity of the system, but fairly insensitive to the di�erences between the various
possible crystal structures. This requirement is important because otherwise we would
force the system to go towards a speci�c crystal structure. A second requirement is that
the order parameter should be insensitive to the orientation of the crystal in space. Van
Duijneveldt and Frenkel [27] have shown that a particular set of bond-order parame-
ters introduced by Steinhardt et al. [70] are particularly suited to act as the reaction
coordinate. These order parameters are sensitive to the degree of spatial orientational
correlation of the vectors that join neighboring particles. In a liquid where there is
only local orientational order, these correlations decay rapidly and, as a consequence, all
bond-order parameters are small (zero in the thermodynamic limit). In a crystal, the
orientation of vectors joining neighboring atoms are correlated throughout the solid and
hence the bond-order parameter is large (of O(1)).

In Appendix 3.6.4 we brie
y summarize the de�nition of the bond-order parameters
used in our simulations. In Table 3.1 values for several of these order parameters are
given for simple cluster geometries. As can be seen from Table 3.1, Q6 has the desirable
feature that it vanishes in the bulk liquid phase, while it is large (O(1)) for the simple
crystal lattices of interest. We therefore use Q6 as the crystalline order parameter. The
reaction coordinate from isotropic 
uid to crystal then corresponds to a path of increasing
Q6. By increasing Q6 from the liquid we do not favor a speci�c crystalline structure.
Rather, the system is allowed to select its `own' speci�c reaction path from the 
uid
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Q4 Q6
cW4

cW6

fcc 0.191 0.575 -0.159 -0.013
hcp 0.097 0.485 0.134 -0.012
bcc 0.036 0.511 0.159 0.013
sc 0.764 0.354 0.159 0.013
Icosahedral 0 0.663 0 -0.170
(liquid) 0 0 0 0

Table 3.1 Bond orientational order parameters for a number of sim-
ple cluster geometries. fcc: face-centered-cubic structure, hcp: hexagonal
close-packed structure, bcc: body-centered-cubic structure and sc: simple
cubic structure.

to one of the crystal structures listed in Table 3.1. The other order parameters listed
in Table 3.1 were used to analyze the con�gurations and distinguish between di�erent
crystal structures.

3.4 Structure analysis

Although the concept of a crystal nucleus is intuitively clear, it is not easy to give an
unambiguous numerical criterion that will identify atoms as either solid- or liquidlike.
In fact, a great variety of criteria to identify solidlike clusters in the liquid have been
proposed. Here, we brie
y review those criteria that are based on the structure (rather
than the dynamics) of crystalline nuclei. In the earliest simulation studies of nucleation
in a Lennard-Jones system, Mandell et al. [17] used the \local" structure function in order
to identify crystalline nuclei. The main disadvantage of the method is that it does not
have high spatial resolution and, more seriously, can be rather sensitive to the orientation
of the crystal nuclei. The structure analysis used by Honeycutt and Andersen [71] is
based on the observation [72] that there are many nearly collinear triplets of neighboring
particles in the Lennard-Jones solid, whereas there are comparatively few such triplets in
the liquid. The criterion used by Honeycutt and Andersen for deciding whether a given
atom was solidlike, was that the atom must have at least �ve distinct pairs of its nearest
neighbors with which it forms a triplet whose angle is greater than a speci�ed cuto�
angle near 180�. However, they observed that the size of the critical nucleus strongly
depends on the cuto� angle used. Yang et al. [73] adopted a criterion that is based on
the observation that crystalline solids, unlike liquids, can be constructed by periodically
repeating a unit cell. In Ref. [73] solidlike regions are identi�ed by searching for such
periodically repeating units.

A more widely used technique for studying both crystalline and amorphous structures
is the Voronoi-analysis of the topology of the environment of a given
particle [18, 19, 21, 23, 25, 27]. The Voronoi polyhedron associated with a given particle
is de�ned as the set of all points of space that are closer to that particle than to any
of the others. In a perfect crystal, the Voronoi polyhedron reduces to the Wigner-Seitz
cell. It is customary to de�ne the signature of a Voronoi polyhedron as a set of integers
(n3; n4; n5; :::), where nl is the number of l-sided faces of the polyhedron. For example,
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the Voronoi polyhedron of a perfect fcc structure, the rhombic dodecahedron (that has
twelve lozenge-shaped faces), is denoted by (0 12 0 0 ...), while the Voronoi polyhedron
of a particle in a body-centered cubic (bcc) structure, is denoted by (0 6 0 8 0 ...) (six
squares, eight hexagons).

In practice, the Voronoi signatures of the particles in a crystal will be modi�ed by the
thermal vibrations. For instance, the characteristic Voronoi polyhedron of the fcc lattice,
the rhombic dodecahedron, will be removed by the tiniest thermal motion. Of the 14
vertices of the rhombic dodecahedron there are six where four faces meet. Any thermal
motion will make these fourfold vertices break up into sets of threefold vertices connected
by short edges. The result is that a variety of polyhedra such as (0364), (0365), (0446),
(0447) occur in a thermally equilibrated fcc crystal. Such tiny displacements of particles
do not a�ect the signature of the bcc Voronoi polyhedron, because it has only threefold
vertices. This is why it is often said that the bcc Voronoi polyhedron is stable against
thermal distortions. However, although this may be true for cold bcc crystals, we �nd
that a bcc crystal close to melting has many other Voronoi signatures in addition to the
characteristic (06080). Hence, Voronoi signatures can only be used in a statistical sense
to identify solidlike particles.

3.4.1 Identi�cation of crystalline clusters

In the previous section, we described how we compute the degree of crystallinity of the
system using global bond-order parameters [27]. We have extended this technique to
identify individual solidlike particles and hence solid clusters. The advantage of the
scheme is that it is rather insensitive to the crystal structure of the cluster.

To identify solidlike particles, we make use of the local orientational order parameter
qlm(i) as de�ned below in Eq. (3.27). From the qlm(i) we can construct local invariants:

ql(i) �

 
4�

2l + 1

lX
m=�l

jqlm(i)j
2

!1=2

(3.12)

and

bwl(i) � wl(i)

, 
lX

m=�l

jqlm(i)j
2

!3=2

; (3.13)

with wl(i) given by

wl(i) �
X

m1;m2;m3

m1+m2+m3=0

�
l l l
m1 m2 m3

�
qlm1

(i) qlm2
(i) qlm3

(i): (3.14)

These local order parameters are measures for the local order around particle i. However,
the local order is large not only in the solid, but also in the liquid. Hence, both in the
liquid and in the solid the local order parameters ql(i) are non-zero, see Fig. 3.2. The
reason that nevertheless a global order parameter, such as Q6, vanishes in the liquid, is
that all q6m(i) add up incoherently. In the solid, the q6m(i) add up coherently and, as
a consequence, the global order parameters are non-zero. It is this coherence of local
bond-order parameters that we use to identify solidlike particles.
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Figure 3.1 Distributions
of the number of connec-
tions per particle in a
Lennard-Jones system for a
thermally equilibrated liq-
uid, bcc and fcc structure
at coexistence (P = 5:68,
T = 1:15). The distribu-
tions are based on averages
over 50 independent atomic
con�gurations.

To every particle i we attribute a normalized (2� 6+1)-dimensional complex vector
~q6(i), with components

~q6m(i) �
q6m(i)�P6

m=�6 jq6m(i)j
2
�1=2 : (3.15)

We can now de�ne a dot product of the vectors ~q6 of neighboring particles i and j:

~q6(i):~q6(j) �

6X
m=�6

~q6m(i)~q6m(j)
�: (3.16)

By construction, ~q6(i):~q6(i) = 1.
We now consider particles i and j to be \connected" if the dot-product ~q6(i):~q6(j)

exceeds a certain threshold, in our case 0.5. It is clear that in the solid almost all ~q6(i)
are in phase with one another and add up coherently to produce a non-zero Q6m. Using
this criterion all particles in the solid will turn out to be connected with one another.
However, to identify a particle as \solidlike", it is not enough that its bond-order is in
phase with only one of its neighbors. After all, even in the liquid it will frequently happen
that the bond-order of neighboring particles is in phase and hence the two particles are
considered \connected". We therefore only identify a particle as solidlike if the number
of connections with its neighboring particles exceeds a threshold value. To illustrate
this technique, Fig. 3.1 shows the histograms of the number of connections per particle
for the liquid, the bcc structure and the fcc structure of the Lennard-Jones system, all
equilibrated at the fcc-liquid coexistence point. As is to be expected, the average number
of connections per particle in the liquid is less than in either solid. More importantly, the
histogram for the liquid phase exhibits very little overlap with the histograms of the two
solid phases. We �nd that, with a threshold value of seven connections per particle, more
than 99% of the particles in an fcc structure are identi�ed as being solidlike. Even for
the bcc structure, which is rather open and disordered, this method identi�es more than
97% of the particles as solidlike. In contrast, for the liquid less than 1% of the particles
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were identi�ed as being solidlike. Thus this analysis method gives an unambiguous, local
criterion to identify solidlike particles. Once we have identi�ed the individual solidlike
particles, we can perform standard cluster analysis to recognize crystallites. We apply
the criterion that any two solidlike particles that are neighbors belong to the same solid
cluster.

3.4.2 Crystal-structure determination

As discussed above, the typical Voronoi polyhedra of the di�erent crystal structures will
be distorted by thermal vibrations of the particles around their lattice positions. As
a consequence, a given structure will be characterized by a distribution of signatures,
rather than a single one. In fact, each crystal structure has its own unique distribution
of Voronoi signatures. Similarly, every structure has its own unique distribution of local
bond-order parameters. We can use either distribution as a \�ngerprint" that enables
us to identify the crystal structure of crystalline nuclei.

To see how this method of analysis works, consider, for instance, the Voronoi his-
togram of a solid cluster. We represent this histogram as a n-dimensional unit vector
v̂, where the number of components (n) corresponds to the number of \bins" of the
histogram. We then decompose the vector v̂ corresponding to the cluster in a linear
combination of the corresponding vectors for the equilibrated liquid, bcc and fcc struc-
tures. That is, we minimize

�2 = (v̂cl � (fliq v̂liq + fbcc v̂bcc + ffcc v̂fcc))
2; (3.17)

where v̂cl, v̂liq, v̂bcc and v̂fcc are the vectors associated with the histograms of the cluster,
the liquid, the bcc structure and the fcc structure, respectively. Clearly, the coe�cients
fliq, fbcc and ffcc are indicative of the type of crystal structure of the cluster. The value
of �2 is an indication of the quality of the �t. For instance, if we were to apply our
analysis to an equilibrated fcc crystal, we would �nd ffcc = 1, fbcc = 0, fliq = 0 and
� = 0.

Analogously, we can interpret the histogram of the probability distribution function
of the local bond-order parameters as a multi-dimensional vector. Fig. 3.2 shows the
probability distribution functions of the most interesting orientational order parameters
for the liquid, bcc and fcc structures. The important thing to note is that, although the
distributions of the local order parameters are quite broad, in particular in the liquid
phase, there is still a considerable di�erence between the distributions that correspond
to di�erent phases. For instance, the distribution of bw6(i) is strongly peaked in either
solid phase, but not in the liquid. The distribution of q4(i) has a characteristic double-
peaked structure in the fcc phase, but not in the bcc or liquid phases. We found that
the probability distribution of bw4(i) of the bcc phase is almost identical to that of the
liquid. It could still be used to distinguish fcc structures from liquid or bcc. However,
we found that the information contained in the bw4-distribution function did not add
to the information obtained by using the q4, q6 and bw6 distributions. It is only the
latter distributions that we have used in our structure analysis. To be more precise, we
�rst concatenate the distribution functions of q6(i), q4(i) and bw6(i) for each structure
to form a single, unique distribution function. With the histogram of this distribution
function we then associate a (normalized) vector. As with the Voronoi histograms, we
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Figure 3.2 Probability distribution functions of the local order param-
eters, as de�ned in Eq. (3.12) and (3.13), in a Lennard-Jones system for a
thermally equilibrated liquid, bcc and fcc structure at 20% undercooling
(P = 5:68, T = 0:92). The distribution functions are based on averages
over 50 independent atomic con�gurations.

can then decompose the order-parameter histogram of our solid cluster in the components
corresponding to pure fcc, bcc and liquid.

When comparing the structure analysis based on Voronoi histograms with the local
bond-order parameter method, we found that the Voronoi method was not very robust:
a slight disordering of a bcc crystal led to a strong change in the Voronoi histogram (for
instance, the characteristic (0608) signature is almost completely destroyed) and the
Voronoi signatures of the disordered bcc and fcc structures end up looking quite similar.
For this reason we have only used the more sensitive bond-order histogram method in
our structure analysis.

3.5 Simulations

All simulations were performed in the isobaric-isothermal (constant-NPT ) ensemble.
Both Monte Carlo simulations and molecular dynamics simulations were performed. The
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advantage of MD is that it facilitates equilibration through collective particle motions.
Moreover, MD is essential to study the kinetics of crystal nucleation. The advantage of
Monte Carlo simulations is that it is particularly suited for umbrella sampling. In what
follows, we use reduced units, such that the Lennard-Jones well depth � is the unit of
energy, while the Lennard-Jones diameter � is the unit of length.

In the Monte Carlo simulations each trial move consisted either of an attempted
displacement of a particle or a trial volume change. The choice between trial volume
moves and trial particle moves was made at random, with 92% probability for the latter.
The acceptance ratio of the particle moves was maintained at 25%, while that of the
volume moves was kept at 50%. For more details of the Monte Carlo scheme, see
Refs. [27, 74]. In order to keep the pressure and temperature constant in our molecular
dynamics simulations, we applied the extended system method proposed by Nos�e and
Andersen [75]. The equations of motion were integrated by a predictor-corrector version
of the velocity Verlet algorithm [68] and the time step used in the molecular dynamics
simulations was in the range 0.005-0.01� , where � is the unit of time. This was adequate
for energy conserving dynamics.

The cuto� radius for intermolecular interactions was chosen such that rc = 2:5.
For the calculation of bond-order parameters, the cuto� distance for nearest-neighbor
\bonds" was chosen at rq = 1:5, which corresponds approximately to the �rst minimum
of g(r) in an fcc crystal at coexistence (in the Monte Carlo simulations the cuto� radii
scale with the linear dimensions of the simulation box, but this is a small e�ect). To
minimize the anisotropy in the system due to the periodic boundary conditions, we used
a truncated octahedral simulation box [76]. To speed up the simulation, we used a
Verlet neighbor list to calculate energies and forces and a linked list [68] to update the
neighbor list. In Appendix 3.6.4 we describe how we combined the linked list method
with truncated octahedral boundary conditions.

All simulations were started from a liquid con�guration, obtained by melting a crys-
tal. The �rst run in a series of umbrella samplings was performed without any weighting
function. By changing the biasing potential, the next simulation was performed in an
adjacent Q6 interval. In this way we could slowly increase the crystallinity in the system
and cross the free-energy barrier that separates the liquid phase from the solid phase.
Once we had crossed the top of the barrier, we checked whether the path was reversible
by lowering Q6. We observed no signi�cant hysteresis at the top of the barrier, although
very long simulations were required to equilibrate the system.

As the equilibration time and the order-parameter 
uctuations are much larger at
the top of the barrier than on either side of it, we tuned the biasing potential in such a
way that, at the top of the barrier, only narrow windows in Q6 were sampled. A typical
simulation in a given window consisted of an equilibration period of 10000-50000 cycles
(MC)/time steps (MD), followed by a production run of 25000-75000 cycles/time steps.

The individual probability distribution functions P (Q6) obtained in di�erent runs
were �tted simultaneously to a polynomial [27]. We used a polynomial �t rather than the
self-consistent procedure of Ferrenberg and Swendsen [77], because a good polynomial
�t can be obtained even when the adjacent histograms do not overlap or overlap only
slightly. The reason is that even a very narrow histogram yields an estimate of the local
derivative of the free energy. From this local information, the global free-energy barrier
can then be reconstructed using a polynomial �t.
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Having determined the free energy barrier, we used constrained MD to generate a
sequence of con�gurations at Q�

6, the position of the top of the barrier. The duration
of this MD simulation was of 100� (25000 time steps) and from this run we kept 50
independent con�gurations separated by 2� (500 time steps) to be used as initial states
for the computation of the barrier crossing 
ux R(t), as given by Eq. (3.10). At the
beginning of the unconstrained MD runs to compute R(t), all particles were given a
velocity drawn from a Maxwell-Boltzmann distribution. The duration of these runs was
5� , which appeared long enough for the system to reach a stationary state. In order to
improve the statistics, we assigned di�erent initial velocities to the same con�gurations,
and we also made use of the time reversal property:

R(t) = �
h _Q6�[Q6(�t)�Q�

6]jHj
�1=2i

hjHj�1=2i
= �R(�t) : (3.18)

This means that the 
ux was computed by averaging over the trajectories obtained
propagating forwards and backwards our set of initial con�gurations obtained from a
constrained run at the top of the barrier. The results that we present here for the rate
were averaged over 200 trajectories.

3.6 Results and discussion

We studied the formation of a critical nucleus and the rate of nucleation for a Lennard-
Jones system at 20% undercooling with respect to the melting temperature. Although
this degree of supercooling is appreciably less than what is used in \brute force" sim-
ulations of crystal nucleation, it is still large compared to the degree of supercooling
that can be reached experimentally for simple liquids such as argon. In our choice of
this particular degree of supercooling we tried to strike a compromise between making
the supercooling as small as possible and, at the same time, keeping the critical nucleus
much smaller than the system size. As we studied a system of O(104) particles, we tried
to ensure that the supercooling was strong enough to make the critical nucleus at least
one order of magnitude smaller. A rough estimate, based on classical nucleation theory,
suggests that the size of the critical nucleus is about 100 particles for 20% undercooling.
However, several studies indicate that, although the core of the nucleus might be quite
small, the interface between the liquid and the solid is rather di�use [17, 63, 71, 78],
so in practice the number of solidlike particles may be appreciably larger. After testing
the method on a small system, we performed all production runs on a system of 10648
particles.

We performed the simulations at two di�erent reduced pressures: P = 0:67 and
P = 5:68. We used the data of Hansen and Verlet [79] to estimate the location of the
melting points (see Table 3.2).

P T �liquid �crystal
0.67 0.75 0.875 0.973
5.68 1.15 0.936 1.024

Table 3.2 Transition data for the
Lennard-Jones system at the reduced
pressures P = 0:67 and P = 5:68. From
Hansen and Verlet [79].
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Figure 3.3 The Gibbs
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Figure 3.3 shows the free-energy barriers computed for these two pressures. Let us
�rst describe qualitatively what happens as the system crosses the barrier. Initially,
the system is in the metastable liquid phase. Due to spontaneous 
uctuations, some
small solidlike clusters are present in the liquid. We �nd that the solidlike clusters
rarely comprise more than 16 particles. When Q6 is increased from the liquid, both
the number and size of these solidlike clusters in the liquid increase. The reason why
there are, initially, several small solidlike clusters is that is is entropically favorable
for the system to distribute a given amount of crystallinity over several clusters. For a
given overall degree of crystallinity, there is a competition between translational entropy,
favoring the formation of many small clusters, and surface free energy, which favors the
formation of a single large crystallite. When the top of the barrier is approached, the
surface free energy dominates and the small solidlike clusters merge. Indeed, at the top
of the barrier only one cluster, the critical nucleus, is observed, apart from a number of
small solidlike 
uctuations that are always present in the liquid. This implies that the
Gibbs free energy of the system at the top of the barrier corresponds to the Gibbs free
energy of the critical nucleus, the nucleation barrier.

In the following we �rst discuss the structure of the nuclei as a function of our \reac-
tion coordinate". Next, we consider the structure of the critical nucleus in more detail
by examining the radial pro�les for the density and our structural order parameters. We
will only present the results of the structure analysis for the system at P = 5:68, as the
ones for P = 0:67 are qualitatively similar. Finally, we discuss the transition rate and
make a comparison with classical nucleation theory.

3.6.1 Crystallite structure

As mentioned in the previous section, only small crystallites are observed on the liquid
side of the barrier. The size of the largest crystallites ranges from 16 particles in the
metastable liquid to 26 particles as the top of the barrier is approached. Previous the-
oretical [80], experimental [81] and computer simulation studies [81{83] indicate that
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for small clusters of Lennard-Jones atoms in vacuo the icosahedral structure is more
stable than any of the crystalline structures. Besides, it has been suggested [70] that
long-ranged icosahedral order would be favored in strongly supercooled liquids. When
we applied a conventional Voronoi analysis to our system in the liquid state, we could
identify on average 1 % of the atoms as being icosahedrally surrounded. However, the
larger crystallites that were present in the liquid never contained any atom with the
characteristic (0 0 12 0) signature of an icosahedron. Also an examination of the local
bond order parameter bw6, which is most sensitive to icosahedral order (see Table 3.1),
supported the conclusion that the largest crystallites do not contain icosahedrally or-
dered atoms. In fact, the bond-order analysis indicates that the larger solidlike clusters
in the metastable liquid have appreciable bcc character, whereas at the top of the barrier
and beyond, they are predominantly fcc-like. To make this analysis more quantitative,
we determined fliq, fbcc and ffcc as de�ned in Eq. (3.17) for the largest cluster in the
system.

Fig. 3.4 shows the structural \composition" of the largest cluster in the system,
as a function of the \reaction coordinate", Q6. The �gure shows that the precritical
nuclei are predominantly bcc- and liquidlike. However, near the top of the barrier, at
Q6 = 0:025, there is a clear change in the nature of the solid nuclei from bcc- and
liquidlike to mainly fcc-like. The fact that the precritical nuclei are rather liquidlike is
not surprising as they are quite small and almost all interface. The important point to
note is that these nuclei have clearly more bcc than fcc character. This suggests that, at
least for small crystallites, we �nd the behavior predicted by Landau theory [32]. Yet,
as the critical and postcritical clusters are predominantly fcc-like, the present results
are also compatible with the �ndings of Swope and Andersen [25], who observed that
nucleation proceeded through fcc crystallites. In fact, the nucleation process as observed
in the present simulations might be interpreted as a manifestation of the Ostwald step
rule [2]: �rst a metastable, bcc, phase is nucleated, which is then transformed into a
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Figure 3.5 Snapshot of the critical nucleus at 20% undercooling (P =
5:68, T = 0:92) in a Lennard-Jones system.

more stable, fcc, phase. What is remarkable is that we �nd that the transformation from
bcc to fcc takes place before the critical nucleus is reached.

3.6.2 Critical nucleus

Visual inspection of the critical and postcritical nuclei showed that the nuclei at this
moderate degree of undercooling are fairly compact, more or less spherical objects (see
Fig. 3.5). This �nding appears to be in contrast to what is found in simulations of
crystal nuclei at large supercooling [71, 73] where rami�ed structures were observed.
Although we �nd the critical nucleus to be fairly spherical, rudimentary facets can be
distinguished. Facetting of crystal nuclei was also observed by B�aez and Clancy [84],
who studied the growth and dissolution of critical fcc nuclei implanted in a liquid at
26% undercooling. B�aez and Clancy found that during the earliest stages of growth the
nuclei are distinctly octahedral, with facets corresponding to the (111) planes of the fcc
crystal.

In order to quantify the degree of non-sphericity of the critical nucleus, we expand
the mass distribution of the crystallite in rank four spherical harmonics (Y4m) and con-
structed quadratic invariants, denoted by S4(cl). For a spherical cluster S4(cl) is, of
course, zero. But for an octahedral cluster it has a value of 0.11. We �nd that, both
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for the critical and postcritical nuclei, S4(cl) is much smaller than is compatible with
an octahedral shape. Hence the critical and postcritical nuclei in our simulations are
indeed quite spherical, which supports the assumption of classical nucleation theory.
However, this �nding seems hard to reconcile with the strong faceting of crystal nuclei
that was observed by B�aez and Clancy [84]. It should be recalled that Broughton and
Gilmer, who have computed the interfacial free energy of a Lennard-Jones system for
three di�erent orientations of the fcc crystal-liquid interface [85], found the surface free
energies for the (111), (100) and (110) faces to be equal to within the statistical error.
If the interfacial free energy is indeed completely isotropic, one should expect to see a
spherical crystal nucleus. Slight anisotropies in the interfacial free energy might lead to
fairly spherical crystal shapes, such as the truncated octahedron. It should be stressed,
however, that interfacial free energies only determine the equilibrium crystal shape and
not the non-equilibrium shape that develops during growth. It is conceivable that the
strongly octahedral crystal shape found in Ref. [84] is determined by kinetics.

In the previous section we found that the critical nucleus has mainly fcc character.
Yet it still has considerably liquidlike and bcc-like character. In fact, it is not surprising
that the critical nucleus has some liquidlike character. After all, it consists only of some
642 particles and has therefore a large surface-to-volume ratio. However, the bcc-like
character is more intriguing. We have therefore studied the local order of the critical
nucleus in more detail.

Given the spherical shape of the critical nucleus it is meaningful to calculate fliq, fbcc
and ffcc in a spherical shell of radius r around the center-of-mass of the cluster. Fig. 3.6
shows the radial pro�le of the local order of the critical nucleus. As expected, we �nd
that the core of the nucleus is almost fully fcc-ordered and that far away from the center
of the nucleus, ffcc decays to zero and fliq approaches unity. More surprisingly however,
is that fbcc increases in the interface and becomes even larger than ffcc , before it decays
to zero in the liquid. Hence, the present simulations suggest that the fcc-like core of the
equilibrated nucleus is \wetted" by a shell which has more bcc character. This �nding
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Figure 3.7 The density � and the number of connections per particle
(NCP ) as a function of r, the distance to the center-of-mass, for the
critical nucleus in a Lennard-Jones system at 20% undercooling (P = 5:68,
T = 0:92). The coordinate-axes are such that they range from a liquid to a
bulk solid value, both for the density and the structural order parameter.
RCNT is the radius of the critical nucleus as given by classical nucleation
theory. Based on averages over 50 independent atomic con�gurations.

explains why Fig. 3.4 shows that even fairly large nuclei do not have a pure fcc signature:
there is always a residual bcc signature due to the interface. It also explains the strong
bcc character of the small clusters, such as appear on the liquid side of the barrier: they
are so small that their structure is strongly surface-dominated.

As can be seen from Fig. 3.6 the interface between the nucleus and the surrounding
liquid is quite di�use (some 4 atomic layers). Such a di�use interface is predicted by re-
cent theories of homogeneous nucleation [63, 78]. In contrast, classical nucleation theory
assumes a sharp interface. A more speci�c prediction about the solid-liquid interface
of crystal nuclei is made in the density functional theory of Harrowell and Oxtoby [63].
This theory predicts that the density pro�le of the clusters reaches liquidlike values well
before the order-parameter pro�le does. In other words, this theory predicts that there
exists a \shell" with liquidlike density but solidlike order around the nucleus. To test
this prediction we plotted both the density and the \degree of crystallinity" as measured
by the number of bond-order connections per particle (NCP ) (see section 3.4.1). The
number of such connections per particle is a measure for the local bond orientational
order and can be used as a structural order parameter. Fig. 3.7 shows the density and
the number of connections per particle as a function of r. We see that the density in
the core of the nucleus is somewhat lower than the density of the bulk fcc solid under
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Figure 3.8 Square of the scaled structural order parameter as a function
of the scaled density �sc for the critical nucleus in a Lennard-Jones sys-
tem at 20% undercooling (P=5.68, T=0.92). The scaled structural order

parameter is given by NCPsc �
NCP�NCPliq

NCPsol�NCPliq
, and the scaled density is

given by �sc �
���liq

�sol��liq
, where NCP is the number of connections per par-

ticle, and liq and sol denote that the quantities are computed in the bulk
liquid and bulk solid, respectively. The solid line is the result from the
simulations, and the dashed straight line is the prediction of the density
functional theory of Oxtoby [86]. Based on averages over 50 independent
atomic con�gurations.

similar conditions. In contrast, the structural order parameter reaches the same value
in the core of the nucleus as in the bulk solid. This �nding is in agreement with the
density functional calculations of Ref. [63].

The �gure also shows that both the density and the structural order parameter
decay smoothly to a liquidlike value outside the nucleus. Moreover, as predicted theo-
retically [63], the density falls o� faster than the structural order parameter. The latter
pro�le appears to be displaced by some 0:7� with respect to the density pro�le. Hence
the cluster is indeed surrounded by a thin layer that is liquidlike in density, but solid-
like in structure. In fact, in the density-functional theory of Oxtoby [86] the density
change varies algebraically with the structural order parameter. Figure 3.8 shows the
relation between the square of the structural order parameter variation and the change
in density, as obtained in the simulation. We should point out that our de�nition of the
solid order parameter is not equivalent to the one used by Oxtoby [86]. Still, the �gure
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suggests that, at least far from the core (i.e. where the crystallinity and density is low)
the quadratic relation between order parameter and density seems to be satis�ed.

Both the di�useness of the solid-liquid interface and the di�erence in the density and
order-parameter pro�les, make the de�nition of the size of the critical nucleus ambiguous.
For instance, if we choose to locate the surface of the critical nucleus at the point where
the order parameter is half-way between its bulk-solid and liquid values, then the radius
of the nucleus would be 4:9� and the number of particles in the critical nucleus would be
630. But if we use the half-way point of the density to de�ne the crystallite surface, then
we �nd a radius of 4:2�, corresponding to 412 particles in the critical nucleus. A direct
comparison of the size of the critical nucleus with the prediction of classical nucleation
theory is therefore not very meaningful.

As the nucleus grows beyond its critical size, it retains its spherical shape and the core
retains the same (fcc) crystal structure. More interestingly, the structure of the interface
does not change either. The postcritical nuclei retain a high degree of bcc ordering at
the interface and the density decays faster than the structural order parameter. In fact,
as can be seen in Fig. 3.9, the width of the interface remains essentially constant. We
have also studied the solid-liquid interface in the limit of an \in�nitely large" crystal-
nucleus, i.e. a planar interface. To this end, we brought the (100)-face of a slab of a
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thermally equilibrated fcc crystal in contact with a liquid and equilibrated the interface
in a constant-NV T molecular dynamics simulation (� = 0:978, T = 1:15, N= 10532).
Fig. 3.10 shows that, just as with the small nuclei, ffcc decreases monotonically in the
interface while fbcc peaks there. The bcc-like structure of the fcc-liquid interface appears
to be quite general and should be observable experimentally.

3.6.3 Nucleation rate

Up to this point, we have only discussed the static aspects of crystal nucleation. Let
us now consider the actual barrier crossing process. Most of the previous computer-
simulation studies of nucleation rates were performed by rapidly quenching a liquid to
temperatures well below its freezing point, and then measuring the time-lag until the �rst
signs of crystallization appear [17, 21{23, 73, 83, 84]. This method, although straight-
forward, has some disadvantages. First and foremost, as the nucleation rate depends
exponentially on the degree of undercooling, the brute-force method only works under
conditions of extreme supercooling. Moreover, the method lumps two times together.
The �rst is the induction time, i.e. the time it takes the cluster-size distribution to
respond to the temperature quench. In the stable liquid, only small clusters appear,
whereas in the supercooled liquid there is an enhanced (although still very small) prob-
ability to observe larger clusters. The second is the actual time it takes to cross the
nucleation barrier, given a (quasi) Boltzmann distribution of precritical nuclei. Finally,
even in a strongly supercooled system, nucleation remains a rare event, and hence the
statistics on the nucleation rate is usually poor.

We therefore did not use the \brute-force" approach to compute the nucleation rate.
Rather, we employed the fact that nucleation is an activated process and that the rate is
given by Eq. (3.6). The advantage of this approach is that we do not have to wait for the
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critical nucleus (or the activated state) to form spontaneously: we prepare the system at
the top of the free energy barrier and simply measure the time correlation between the
initial order-parameter velocity and the probability of �nding the system in the solid side
of the barrier at a later time t. This correlation function is expected to reach a plateau
value relatively quickly (at least, compared to the actual times involved in the nucleation
process) and hence the nucleation rate can be determined from comparatively short runs.
By performing many runs, we can improve the statistical accuracy of the measurement
of the nucleation rate. Even so, the simulations become quite time-consuming.

The �rst step in the computation of the 
ux is to identify the \transition state" from
our knowledge of the shape of the free energy barrier. We denote this point by Q�

6. We
then performed a MD simulation of the system under the constraintQ6 = Q�

6, to generate
a set of independent con�gurations at the top of the barrier. Note that constraining Q6

does not necessarily imply that the size of the critical nucleus is constrained. However, a
structure analysis of the con�gurations at the top of the barrier showed that the average
size of the largest cluster did not change signi�cantly during the constrained run. The
set of con�gurations obtained in this way was used as initial state for the computation
of R(t) from Eq. (3.10).

Figure 3.11 shows the transmission coe�cient �, as de�ned in Eq. (3.9) for P = 0:67.
The �gure shows that initially the transmission coe�cient decreases rapidly from the
value � = 1 at t = 0. This is due to recrossing at short times. However, after a short
transient relaxation period of approximately 0:5� , �(t) appears to reach a plateau value
(shown as a dashed line in the graph). As it is clear from the �gure, the statistical
accuracy of �(t) is rather poor, even though averages over 200 trajectories were taken.
A direct analysis of the trajectories of the system in Q6-space showed that its behavior
is distinctly di�usive. The system does not clearly fall into either minima (solid or liquid
one) in the duration of the run, but remains close to the top of the barrier in most cases.
The largest cluster present in the system, the critical cluster, did not grow or shrink
monotonically, but its size 
uctuated, although in most cases a clear tendency to the
liquid or to the solid minimum could be observed. Hence, to speak in the language of
chemical kinetics, crystal nucleation is closer to the Kramers limit of di�usive escape
over a barrier [87] than to the \ballistic" crossing of Eyring's transition-state theory [66].

Indeed, due to the di�usive nature of the barrier crossing, the plateau value of the
transmission coe�cient is quite small, � � 0:05 for P = 5:68 and � � 0:2 for P =
0:67. The prediction of transition-state theory (TST) for the rate can be obtained
by combining the initial value of the forward 
ux, R(0+), with the earlier results for
the barrier height. It was found from the simulations that for P = 5:68, R(0+) =
5:85 � 10�3��1, and hence kTST = 7:35 � 10�14��1. From kTST and the plateau value of
the transmission coe�cient we can then get the full nucleation rate, which is found to
be k = 4:04 � 10�15��1. In the low pressure case the values were kTST = 2:40 � 10�11��1

and k = 4:79 � 10�12��1.
The rates obtained in our simulation are measured in units of Q6 per unit time, as the

quantity computed was the 
ux of Q6. Nucleation rates are usually measured in number
of solid particles produced in the unit volume per unit time. To get such a quantity for
the results of the simulation we would have to multiply k by �liqdNsol=dQ6, where �liq is
the density of the liquid and Nsol is the number of solid particles. We assume that there
is a linear relationship between Q6 and the number of solid particles (this is certainly
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true for large crystallites). We then can write

dNsol

dQ6
=

N�

sol �N liq
sol

Q�

6 �Qliq
6

;

where the superscript liq denotes that the corresponding quantity is evaluated in the
liquid minimum. Taking into account the results of the previous sections we �nally
obtain kTST = 2:23 � 10�9��3��1, k = 1:23 � 10�10��3��1 for P = 5:68 and for P = 0:67
we get kTST = 4:09 � 10�7��3��1, k = 8:19 � 10�8��3��1.

The value of the rate k implies that in order to observe nucleation in a system of
10648 particles at 20% undercooling at P = 5:68, a simulation time of the order of 106�
would be required (this estimate is obtained by taking the inverse of k and dividing the
result by the volume of the system). Taking into account that a time step in a MD
simulation is typically of the order of 10�2� , runs of a duration of at least 108 time steps
would have to be performed. This is not in disagreement with previous studies that
were not able to see crystallization in liquids with a degree of undercooling smaller than
about 26% during runs of a duration of � 1000� [84].

3.6.4 Comparison with classical nucleation theory

Turnbull and Fisher [88] applied the Becker-D�oring formalism to nucleation in condensed
systems and derived the following expression for the nucleation rate [6, 88]:

k = A(T )e���G�

; (3.19)

where �G� is the nucleation barrier and A(T ) is a kinetic prefactor. We are now in a
position to test the predictions of classical nucleation theory (CNT), both concerning
the height of the free-energy barrier to nucleation and the value of the kinetic prefactor.
As argued in the previous section, predictions concerning the size of the critical nucleus
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P 
 �h (T = Tm) �� (T = 0:8Tm) vfcc (T = 0:8Tm)
0.67 0.35 -1.31 -0.262 0.998
5.68 0.35 -1.46 -0.292 0.948

Table 3.3 Data used to calculate the nucleation rate as given by classical
nucleation theory; the average of the surface free energies, 
, calculated by
Broughton and Gilmer [85], the enthalpy change per particle on freezing,
�h, at coexistence [79], the estimated di�erence in chemical potential ��
between the bulk fcc solid and bulk liquid at 20% undercooling, and the
volume per particle in the bulk fcc solid at 20% undercooling, vfcc, both
for P = 0:67 and P = 5:68.

are harder to test, as the size of the critical nucleus, as computed in the simulations, is
ill de�ned.

In classical nucleation theory the height of the free-energy barrier is given by [6]

�G� =
16�
3v2

3(��)2
; (3.20)

where 
 is the surface free energy per unit area of the liquid-crystal interface, v is the
volume per particle in the solid and �� is the di�erence in chemical potential between
the bulk solid and bulk liquid.

Two problems arise when applying Eq. (3.20). The �rst is that we do not know the
solid-liquid interfacial free energy for Lennard-Jones crystals in contact with a super-
cooled liquid. However, as already mentioned above, Broughton and Gilmer [85] have
calculated the surface free energy for three di�erent orientations of the fcc crystal-liquid
interface. They performed their calculations at coexistence, near the triple point (i.e.
low pressure), and found the surface free energies to be equal within their error bars. In
our comparison we will use the average of their estimates for the surface free energies of
the di�erent faces.

The second problem is that we do not know the di�erence in chemical potential be-
tween the bulk solid and bulk liquid at 20% undercooling. However, close to coexistence
the di�erence in chemical potential can be approximated by [6]

�� � �h(Tm � T )=Tm; (3.21)

where �h is the enthalpy change per particle on freezing at coexistence and Tm is the
melting temperature. We have taken the enthalpy change per particle in the liquid-
solid transition at coexistence from the data of Hansen and Verlet [79]. In Table 3.3 we
have collected for both pressures the average value of the surface free energies estimated
by Broughton and Gilmer [85], the enthalpy change per particle on freezing at coexis-
tence [79], the estimated di�erence in chemical potential between the bulk fcc solid and
bulk liquid at 20% undercooling and the volume per particle in the bulk fcc solid at 20%
undercooling.

Using the data shown in Table 3.3, classical nucleation theory yields the following
predictions for the nucleation barriers: ��G� = 17:4 at P = 0:67 and ��G� = 8:2 at
P = 5:68. We �nd from our simulations that ��G� � 19:4 for the lower pressure and
��G� � 25:1 for the higher pressure (see Fig. 3.3). As Broughton and Gilmer have
calculated the surface free energy at a temperature and pressure which are closer to
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the temperature and pressure of the simulation at P = 0:67, we expect the agreement
between the theoretical prediction and the results of the simulation to be better for this
lower pressure than for the higher pressure, P = 5:68. In fact, for the lower pressure
the agreement between the predicted height of the barrier and the height of the barrier
as computed in our simulation is surprisingly good if one takes into account the crude
approximations made in classical nucleation theory. The discrepancy for the higher pres-
sure between the CNT-prediction and the results of the simulation is most likely mainly
due to the fact that the surface free energy at this higher pressure and temperature is
somewhat larger than the Broughton and Gilmer estimate. As the surface free energy
comes in with the third power in the theoretical expression for the height of the barrier,
a di�erence of only 40% in the surface free energy could account for the discrepancy
between theory and simulation. If we make the assumption that the surface free energy
is proportional to the latent heat [6] (which increases with pressure), then we arrive
at an estimate for the barrier height at the higher pressure that is within 20% of the
simulation results.

In classical nucleation theory the radius of the critical nucleus is given by [6]

R� =
2
v

j��j
: (3.22)

Using the data form Table 3.3, CNT gives the following predictions for the radius of a
critical fcc nucleus: 2:7� for P = 0:67 and 2:3� for P = 5:68. We have indicated this
radius for the critical nucleus at the higher pressure in Fig. 3.7. Although the exact
boundary between the core and the interface of the nucleus is not clear, it seems that
CNT signi�cantly underestimates the size of the critical nucleus.

Let us next consider the kinetic prefactor. The following expression for A(T ) has
been proposed [6]:

A(T ) = Z�liq
24Dn�2=3

�2
: (3.23)

D is the di�usion coe�cient, �liq is the density of the liquid, n� is the size of the critical
nucleus and � is the atomic jump distance in the liquid. Z is the Zeldovich factor, which
relates the number of solid clusters in the steady state with the equilibrium value,

Z =

�
j�G00(n�)j

2�kBT

�1=2

; (3.24)

where �G00(n�) is the second derivative of the Gibbs free energy with respect to the
cluster size at n�. Using the CNT-expression for �G we get:

Z =

�
j��j

6�kBTn�

�1=2

: (3.25)

When making the comparison between the CNT-prediction for A(T ) and the value
obtained from the simulations, we use the value of n� obtained in the simulation. For
P = 5:68 we obtained in the simulation n� � 642, so Eq. (3.25) leads to a value
of the Zeldovich factor of Z = 5:12 � 10�3, while for P = 0:67, n� � 500 and Z =
6:81 � 10�3. Similar values are obtained if we use Eq. (3.24) directly, although in this
case the statistical accuracy is poor. The appearance of the Zeldovich factor in the
expression for the rate-constant is a consequence of the fact that the barrier crossing is
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considered as a di�usive rather than a ballistic process [6]. It is precisely this di�usive
behavior near the top of the barrier that leads to recrossings and hence to a reduction
of �(t). The small value of the Zeldovich factor, as given by Eq. (3.24), is in qualitative
agreement with the strong reduction of � due to recrossings, as found in the simulations.

The di�usion coe�cient in the supercooled liquid was computed in a separate sim-
ulation and was found to be D � 1 � 10�2�2��1, for both pressures. The atomic jump

distance was approximated by �
�1=3
liq , which gives � � 1:0� for P = 5:68 and � � 0:97�

for P = 0:67. This leads to a prediction of the kinetic prefactor of A = 8:76 �10�2��3��1

for P = 5:68 and A = 0:113��3��1 in the low pressure case. The value of the ki-
netic prefactor in the simulation can easily be obtained by dividing the value of the
rate k by exp (��G�=kBT ). The resulting value is A = 9:78��3��1 for P = 5:68 and
A = 21:83��3��1 for P = 0:67. This means that the kinetic prefactor obtained in the
simulation is about two orders of magnitude larger than the one predicted by classical
nucleation theory, leading to a larger value of the nucleation rate.

Broughton et al. [89, 90] performed a simulation study of crystal growth of a Lennard-
Jones fcc crystal in contact with the melt. They observed that the (100) face crystallized
two to three times faster than the (111) face. In fact, they found that for the (100) face
the energy barrier for crystallization vanishes and that the rate is not limited by the
mobility of atoms in the liquid, but is determined by the ideal gas thermal velocity,
(3kBT=m)1=2. If we assume that the growth mechanism of the critical nucleus is that of
the (100) face, and take A(T ) to be

A(T ) = Z�liq
4n�2=3(3kBT=m)1=2

0:4a
; (3.26)

where a is the interatomic spacing [89, 90], then we get a predicted prefactor of 6:45��3��1

for the higher pressure and 6:31��3��1 for the lower pressure. Note that the agreement
with the simulation results is much better, although the measured prefactors are still
higher than the predicted ones. Most experiments also indicate that the kinetic prefac-
tor is signi�cantly larger than predicted by classical nucleation theory [6]. However, it is
interesting to note that in recent experiments by Brugmans et al. [91] the opposite was
found: a kinetic prefactor that is many orders of magnitude smaller than the estimate
of classical nucleation theory.

Finally, we should point out that the nucleation rate at 20 % supercooling, although
very small on the time scale of a computer simulation, is still very large from an ex-
perimental point of view. If we use the values of argon for � and � , and express the
nucleation rate at P = 5:68 in the usual units, we �nd k = 1:44 � 1024cm�3s�1. This
means that liquid argon at 20% undercooling would crystallize essentially instantly. In-
deed, argon cannot be supercooled by 20% (in fact, it is notoriously di�cult to supercool
liquid argon).

Appendix A Order parameter de�nition

First we de�ne the set of neighbors of a particle i as all particles j that are within a given
radius rq from i. The vectors rij joining neighbors are called bonds. The unit vector r̂ij

speci�es the orientation of the bond rij. In a given coordinate frame, the orientation of
the unit vector r̂ij uniquely determines the polar and azimuthal angles �ij and �ij. In
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order to construct invariants, we �rst consider the spherical harmonics Ylm(�ij; �ij) �
Ylm(r̂ij). We can now characterize the local structure around particle i by

qlm(i) �
1

Nb(i)

Nb(i)X
j=1

Ylm(r̂ij); (3.27)

where the sum runs over all Nb(i) bonds that particle i has with its neighbors. The
qlm(i) are still local order parameters. By calculating the average of qlm(i) over all N
particles, we obtain global orientational order parameters Qlm:

Qlm �

PN
i=1Nb(i)qlm(i)PN

i=1Nb(i)
: (3.28)

The Qlm still depend on the choice of reference frame. However, from the Qlm, rotation-
ally invariant combinations can be constructed:

Ql �

 
4�

2l + 1

lX
m=�l

jQlmj
2

!1=2

(3.29)

and

cWl �Wl

, 
lX

m=�l

jQlmj
2

!3=2

; (3.30)

with Wl given by

Wl �
X

m1;m2;m3

m1+m2+m3=0

�
l l l
m1 m2 m3

�
Qlm1

Qlm2
Qlm3

: (3.31)

Ql and Wl are the second-order and third-order invariants, respectively. The term in
brackets in Eq. (3.31) is a Wigner-3j symbol.

The order parameter Q6 as de�ned above and used in Ref. [27] is not suited for
constraint MD simulations, because the presence of a cut-o� radius rq means that Q6

is not a continuously di�erentiable function of all particle coordinates. This problem
can be remedied by attributing a weight �(rij) to the contribution of a given pair ij to
the Qlm, where �(r) is a function that goes to zero smoothly at r = rq. In the present
simulations, we have chosen �(r) to be a quadratic function that has its minimum at rq
and equals one at rij = �:

�(rij) �

�
rij � rq
� � rq

�2

(3.32)

The corresponding de�nitions of qlm(i) is

qlm(i) �

PNb(i)
j=1 Qlm(rij)�(rij)PNb(i)

j=1 �(rij)
; (3.33)
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Figure 3.12 The two-dimensional analog of the translation of all parti-
cles in the right half of the truncated octahedron, our simulation box, to
the space between the left half of the truncated octahedron and the con-
taining cube (containing the truncated octahedron), in order to set up the
cell list. The rotated square in the middle corresponds to the truncated
octahedron and the containing square corresponds to the containing cube.
In this analog the translation of the particles corresponds to a translation
of all particles in area A to the area A0 and all particles in area B to the
area B0.

and Qlm becomes

Qlm �

PN
i=1

PNb(i)
j=1 Qlm(rij)�(rij)PN

i=1

PNb(i)
j=1 �(rij)

: (3.34)

We �nd that the present de�nition of Q6 leads to values that di�er little from those
obtained with the de�nition of Q6 used in Ref. [27].

Appendix B Linked lists for octahedral boundary conditions

We use a truncated octahedral periodic unit cell in our simulations. At �rst sight, it
would seem that a truncated octahedron is not a convenient shape to use when setting
up a mesh of cubic cells for the linked list that we use to speed up the computation.
However, it should be noted that the truncated octahedron is a Wigner-Seitz cell of a
bcc lattice. The unit cell of this cubic lattice has twice the volume of the truncated
octahedron. Clearly, it is easy to partition this cubic unit cell into small cubic mesh
cells. However, we should take care to avoid double counting, i.e. there should be a
one-to-one correspondence between every point in the truncated octahedral box and one
of the cubic mesh cells. To this end, we map all particles in the right half (x > 0) of the
truncated octahedron to their periodic image that is in the left half (x < 0) of the cubic
unit cell. This mapping is unique. And, as the volume of the truncated octahedron
is equal to half the volume of the cube, we have thus mapped the position of every
particle in our simulation box to the left half of the cube. Once we have mapped all
particles to the left half of the cube, we can divide that volume into 0:5M�M�M cells
and use the conventional techniques to construct the linked list [68]. Fig. 3.12 shows a
two-dimensional analog of this procedure. In the two-dimensional analog, all particles
in area A are mapped to area A0 and all particles in area B to area B0.



4 Choice of reaction coordinate

In this chapter we discuss the choice for the reaction coordinate. We point out that

there is a fundamental di�erence between the use of a global and local order parameter to

measure the amount of the new phase. Using a global order parameter, precritical nuclei

may break up spontaneously for entropic reasons. At some point, however, the nuclei

combine to form a relatively large luster. The transition from small clusters to one large

cluster is discussed in detail. Finally, we present a method that allows us to avoid this

entropic cluster break up.

4.1 One or many clusters

When a liquid phase solidi�es, it will tend to form the solid structure with the lowest
free energy. It is usually assumed that the lowest free-energy state in the two-phase
region is one in which a single large crystallite has formed. The reason why this is
the lowest free energy state is, of course, that a single crystal has a lower surface area
than a larger number of crystallites with the same total volume. And, indeed, it seems
obvious that, once crystallization is complete, the single crystal must correspond to the
(overwhelmingly) most likely situation.

However, in a simulation, we can constrain a system to be at a given point in the
two phase region. That is, the crystalline phase takes up a �xed volume fraction �cr of
the total available volume. The question is: is the single crystal still, necessarily, the

most stable con�guration?
In the early work of Salsburg and Wood [92], the free-energy barrier that is respon-

sible for hysteresis in constant NV T simulations is estimated assuming that a system in
the two-phase region will always try to minimize its surface free energy. However, one
should also consider the fact that, by breaking up a single crystal into a large number
of smaller crystallites, the system may gain entropy. The question is if and when this
entropic gain outweighs the surface free-energy cost.

To arrive at an estimate, we consider the following simple model. The total Helmholtz
free energy of a system consisting of M particles (of which N particles are in the solid
phase) in volume V at temperature T , is denoted by F . The fraction of all particles
that are in the crystalline state is

Xcr = N=M (4.1)
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Let us now compute the excess free energy per solidlike particle in a two-phase system,
using the Helmholtz free energy of the neat liquid as our reference state. The Helmholtz
free energy of the two-phase system contains three contributions.

1. A negative \bulk" contribution

�Fb

N
= ���� ; (4.2)

where �� is the chemical potential di�erence between solid and liquid and �
= 1=kBT . This term does not change as we redistribute particles over di�erent
numbers of crystallites. We need not consider this term in the rest of our analysis.

2. A surface free energy term,

�Fs

N
=
ncr

N
4�r2c�
sl ; (4.3)

where ncr is the number of crystallites, rc is the crystallite radius and 
sl is the
free energy per unit area of the solid-liquid interface. We can easily relate rc to
the volume fraction occupied by the solid:

ncr�cr(4�=3)r
3

c = N (4.4)

where �cr is the number density of the crystal. Hence,

rc = (N(3=4��crncr))
1=3 : (4.5)

If we insert this in the expression for Fs, we obtain

�Fs

N
=
ncr

N
4��
sl (N(3=4��crncr))

2=3 =
�ncr

N

�
1=3

4��
sl ((3=4��cr))
2=3 (4.6)

�
�ncr

N

�1=3
�f0 : (4.7)

The last line de�nes the parameter

f0 � 4�
sl ((3=4��cr))
2=3 (4.8)

For the Lennard-Jones system near the triple point, �f0 is a number of order 1.
3. The �nal term is a translational entropy term. To estimate this term, we simply

assume that the crystallites behave like a gas of identical spherical particles. The
free energy of such a gas could, for instance, be estimated using the Carnahan-
Starling equation of state. However, we shall assume that the volume fraction of
solid is low, and we therefore ignore all non-ideal terms in this free energy.

�Ftr

N
� ncr

N
(ln(ncr=V )� 1) (4.9)

It is convenient to rewrite the above expressions in terms of n0, the number of particles
per crystallite (n0 = N=ncr). If we combine the surface and translational free energies,
we get:

�F (ncr)

N
=

1

n
1=3
0

�f0 +
1

n0

�
ln

�
N=V

n0

�
� 1

�
: (4.10)

Rather than carry out the minimization of the free energy with respect to n0, we consider
two limiting cases, namely n0 = N (ncr = 1), i.e. a single crystallite and ncr = Nmax, a
total breakup of the solid in small \nano" crystallites. The smallest cluster should still
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be large enough to be recognized as a crystal. Hence, we should expect that there will
be of the order of 12 particles in the minimal solid cluster. We call this number nmin.
Hence Nmax = N=nmin.

Before we proceed we should reconsider the \neat" liquid at coexistence. Even in
the liquid there will be a �nite concentration of small clusters or, what amounts to the
same thing, the average number of crystalline particles (hNil) is non-zero in the liquid.
As we move into the two-phase region, the number of crystalline particles increases and
we should look at the initial change in free energy.

To estimate hncril, the number of nano-crystallites in the neat 
uid, we consider the
expression for the free energy as a function of ncr:

�Fl = ncr

�
n
2=3
min�f0 + ln[ncr=V ]� 1

�
(4.11)

To �nd the state of lowest free energy, we minimize with respect to ncr, to �nd

�f0n
2=3
min + ln

�ncr

V

�
= 0 (4.12)

Hence, the equilibrium concentration of nano-crystallites in the neat 
uid is

hncr=V il = exp(��f0n2=3min) (4.13)

The second derivative of the free energy with respect to ncr is

@2�F

@n2cr
=

1

ncr
(4.14)

Therefore, close to coexistence, the dependence of the free energy on the number of
crystalline particles is given by

��F =
exp(�f0n

2=3
min)

2V n2min

(�N)2 (4.15)

or, in terms of the fraction of crystalline material Xcr = (�N)=M ,

��F =
V exp(�f0n

2=3
min)�

2

2n2min

X2

cr (4.16)

Now consider the alternative scenario where all additional crystalline material is used
to form a single cluster. The radius of this large cluster is related to the radius of the
nano-clusters by

r3large = r3nano(�V Xcr)=nmin (4.17)

and then

��F = f0

�
�V Xcr

nmin

�2=3

(4.18)

Note that the free energy of a single cluster varies as X
2=3
cr . Hence, initially it is always

more favorable to form many small crystallites, rather than a single large one. Let us
now estimate the point where the single cluster becomes more stable. This happens
when

f0

�
�V Xcr

nmin

�
2=3

=
V exp(�f0n

2=3
min)�

2

2n2min

X2

cr (4.19)
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This implies that

X4=3
cr = f0

�
�

nmin

�
2=3

2n2min

exp(�f0n
2=3
min)�

2

V �1=3 (4.20)

or

Xcr � V �1=4 (4.21)

This means that the break-even point depends on system size. For computer simulations
of �nite systems, this e�ect is certainly non-negligible, as illustrated by our simulation
results. A more general problem with the use of such a \global" measure for the degree of
crystallinity is that the size of the smallest cluster that is stable with respect to entropic
breakup grows with system size:

Nlarge = �

�
�

nmin

�1=2
 

2f0n
2

min

exp(�f0n
2=3
min)�

2

!
3=4

V 3=4 (4.22)

Therefore, even if a cluster is \postcritical" in the sense of classical nucleation theory, it
may still be \precritical" for entropic reasons.

We emphasize that the above derivation is oversimpli�ed. However, it shows that
problems may arise when using a global (i.e. total degree of crystallinity) rather than local
(i.e. size of the largest cluster) order parameter in the construction of the free-energy
barrier between liquid and solid.

Below, we present a new method that is based on the use of a local order parameter. It
allows for the sampling of all cluster sizes with equal accuracy. But before we present the
details of the method, let us discuss the statistical mechanics of the cluster distribution.

4.2 Cluster-size distribution

Consider a system in a volume V , at temperature T and at constant chemical potential
� ( i.e. a system in the grand-canonical ensemble). The partition function is given by

�(�; V; T ) �
1X

N=0

exp(��N)Q(N; V; T ); (4.23)

where N is the number of particles, � � 1=kBT is the reciprocal temperature, kB is
Boltzmann's constant, and Q(N; V; T ) is the canonical partition function:

Q(N; V; T ) =
1

�3NN !

Z
drN exp[��U(rN)] : (4.24)

Here U(rN) is the potential energy of the con�guration with the coordinates rN , and
� � h=

p
2�mkBT is the thermal De Broglie wavelength.

We will assume that we have a criterion that enables us to de�ne which particles make
up a cluster. The total number of particles in the clusters will be denoted by Nc and
the remaining particles in the parent phase will be denoted by No, hence N = Nc +No.
Clearly, the potential energy U depends on rNo and rNc, i.e. U = U(rNc; rNo), and we
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rewrite the grand-canonical partition function as

�(�; V; T ) =

1X
Nc=0

exp(��Nc)

1X
No=0

exp(��No)�

1

�3NoNo!

1

�3NcNc!

Z
drNo

Z
drNcW(rNc; rNo) exp[��U(rNc; rNo)]:

(4.25)

where we have used the fact that there are N !=(Nc! No!) ways to select Nc and No

particles from a total number of Nc + No particles. In the above equation, we have
introduced a weight function W which is de�ned such that it is one when the number
of particles that satisfy the cluster criterion equals Nc and zero otherwise. It should be
stressed that we do not assume that there is only a single cluster in the system. Hence,
later we have to consider the number of ways in which we can distribute Nc particles
over the total number of clusters. In fact, W contains products of single-cluster weight
functions. If we label the clusters by their size n and by jn = 1; ::; Nn, where Nn is the
number of clusters of size n, it can be written as:

WNc
=
XY

n

NnY
jn=1

wjn(r
n)

where
P

indicates that we consider all cluster distributions and wjn is one if its argu-
ments satisfy the criterion for a single jn-particle cluster, and zero otherwise. With these
de�nitions we can rewrite Eq. 4.25 as

�(�; V; T ) =

1X
N1=0

1X
N2=0

� � �
1X

Nnmax
=0

1

N1!N2! � � �Nnmax!

nmaxY
n=1

(exp(��n)n3=[�3nn!])Nn

�
1X

No=0

exp(��No)
1

�3NoNo!

Z
drNo

Y
n

�Z
dr0

n�1

�Nn

�
Z nmaxY

n=1

NnY
jn=1

dRjnwjn(Rjn ; r
0n�1; rNo) exp[��U(R; rNo)]:

(4.26)

Here Rjn denotes the center-of-masses of the clusters and the primes indicate that the
coordinates are taken with respect to the center-of-mass of the cluster. Note that we
have not split the potential energy function yet. The product

Q
n

QNn

jn=1
wjn containsQ

nNn distinct cluster functions wn. In this equation we have somewhat arbitrarily
introduced a maximum cluster size nmax.
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For any given con�guration of clusters we can de�ne a potential of mean force
W (rNc;�) as

exp[��W (rNc ;�)] �
1X

No=0

exp(��No)
1

�3NoNo!
�

Z
drNo

nmaxY
n=1

NnY
jn=1

wjn(Rjn ; r
0n�1; rNo) exp[��U(rNc; rNo)]:

(4.27)

All possible con�gurations of the particles in the parent phase will contribute toW (rNc;�).
It is the average potential the particles in the clusters feel due to all interactions with
the \solvent" particles. With the above de�nition for the potential of mean force, the
grand-canonical partition function can be rewritten as

�(�; V; T ) =

1X
N1=0

1X
N2=0

� � �
1X

Nnmax
=0

1

N1!N2! � � �Nnmax!

nmaxY
n=1

(exp(��n)n3=[�3nn!])Nn

�
nmaxY
n=1

�Z
dr0

n�1

�Nn
Z nmaxY

n=1

NnY
jn=1

dRjn exp[��W (rNc;�)]:

(4.28)

The potential of mean force depends on the interactions between particles of the same
cluster and on the interactions between particles of di�erent clusters. In nucleation the
density of clusters is usually so low, that the interactions between them can be neglected.
However, at this stage we will not yet ignore these, but assume that the inter-cluster
interaction energy is pair-wise additive and only depends on the positions of the center-
of-mass of the clusters. The interaction energy W (rNc;�) can then be written as

W (rNc;�) =W0 +
X
n

NnX
jn=1

Wn(r
n;jn;�) +

1

2

X
n;n0

X
jn;jn0

Wn;n0(Rn;jn;Rn0;j
n

0
;�):

(4.29)

The constant W0 is a measure for the grand-potential in the absence of clusters. Wn

denotes the intra-cluster interaction energy of cluster jn of size n, andWn;n0 is a measure
for the e�ective interaction between clusters jn and jn0 . With this assumption for the
potential of mean force, the grand partition function becomes

�(�; V; T ) = exp(��W0)

1X
N1=0

1X
N2=0

� � �
1X

Nnmax
=0

1

N1!N2! � � �Nnmax!

�
nmaxY
n=1

(exp(��n)n3=[�3nn!])Nn

Z
drNc

nmaxY
n=1

�Z
dr0

n�1
exp[��Wn(r

0n�1;�)]

�Nn

�
Z nmaxY

n=1

NnY
jn=1

dRjn exp[��Wn;n0(Rn;jn;Rn0;j
n

0
;�)]

(4.30)
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As a �nal simpli�cation, we ignore the interactions between the clusters. The partition
function then becomes

�(�; V; T ) = exp(��W0)

1X
N1;N2;::;=0

Y
n

[exp(��nNn)]�

Y
n

1

Nn!

�
V n3

�3nn!

Z
dr0

n�1
exp[��Wn(r

0n�1;�)]

�Nn

:

(4.31)

We now de�ne the partition function Zn of an n-mer as

Zn � V n3

�3nn!

Z
dr0

n�1
exp[��Wn(r

0n�1;�)]: (4.32)

With the above de�nition of the partition function Zn of an n-mer, the grand parti-
tion function can be rewritten as

�(�; V; T ) = exp(��W0)

1X
N1;N2;::;=0

Y
n

[exp(��n)Zn]
Nn

Nn!
: (4.33)

We can interchange the order of the product and the summation to obtain for the
partition function

�(�; V; T ) = exp(��W0)
Y
n

exp(exp[��n]Zn)

= exp(��W0) exp(
X
n

exp[��n]Zn) :
(4.34)

The average number of clusters of size n is then simply given by

hNni = Zn exp[��n]: (4.35)

If we de�ne the free energy of an n-mer as

Fn � �kBT lnZn; (4.36)

Eq. 4.35 can be rewritten as

hNni = Zn exp[��(Fn � n�)] = exp[���F ]: (4.37)

The number of clusters of size n is an extensive quantity that is proportional to the
size of the system. Hence, it is useful to express the cluster size distribution in terms of a
probability distribution function that is intensive. To this end, we de�ne the probability
P (n):

P (n) � Nn

N
; (4.38)

where N is the total number of particles in the system. We can now de�ne an intensive
Gibbs-free energy of the cluster

�G(n) � �kBT ln[P (n)]: (4.39)
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4.3 New method

In the previous chapter we have seen that by using a global order parameter as our
reaction coordinate, it is not possible to study the structure and free energy of a cluster
for all sizes. When a cluster is smaller than a certain size, it breaks up into smaller
clusters for entropic reasons. We therefore devised a new scheme which enables us to
grow a single cluster all the way from the liquid to the solid.

In this scheme we measure the probability distribution function of cluster sizes, as
de�ned in Eq. 4.38. In an unbiased, free Monte-Carlo or Molecular-Dynamics run, we
can only measure clusters that have a free-energy in the order of one kBT . This means
that we can only sample relatively small clusters. In order to sample clusters even
near the top of the barrier, we have employed the umbrella-sampling technique. In the
umbrella-sampling technique [26], we bias the sampling of con�guration space by adding
a biasing potential to the potential of our model system. In the previous chapter, the
biasing potential was taken to be a function of a global order parameter. Rather than
using a global order parameter, which is sensitive to the overall degree of crystallinity
in the system, we now took as the order parameter the size of the largest cluster present
in the system. The advantage of this scheme is that we can directly control the size of
this cluster.

By measuring the size distribution of the largest cluster, we can compute the prob-
ability distribution function as de�ned in Eq. 4.38. This is maybe not entirely obvious.
However, one should note that the probability P (n) that a cluster of a certain size n is
present in the system, is given by

P (n) = P1(n) + 2P2(n) + 3P3(n) + :::: (4.40)

Here P1(n) is the probability that one cluster of size n is present, P2(n) is the probability
that two clusters of size n are present, and so on. As we can safely assume that the

uctuations, by which nuclei are formed, are uncorrelated, we have

Pi(n) = P (n)i: (4.41)

Hence, Eq. 4.40 becomes

P (n) = P1(n) + 2P 2

1
+ 3P 3

1
:: (4.42)

Clusters that cannot be sampled in an unbiased run, are clusters for which P1(n) is
small. We can therefore ignore the higher order terms in the above equation, yielding

P (n) � P1(n): (4.43)

This implies that for large clusters that cannot be sampled in an free run, we can
obtain the probability distribution function as de�ned in Eq. 4.38, by measuring the
size distribution of one cluster, the size of which is controlled by the form of the biasing
potential.

In order to test the new method we performed NPT Monte Carlo simulations on a
system consisting of soft repulsive spheres, interacting via v(r) = �(�=r)n, with n = 12:5.
The degree of supercooling was 25% with respect to the coexistence point given by
Agrawal and Kofke [93]. The number of particles was N = 3456, which was large
enough to avoid serious �nite size e�ects.
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Figure 4.1 The Gibbs free energy of the r�12:5 system as a function of
the size of the largest cluster present in the system at 25% supercooling
(P = 22:54, T = 0:75).

The biasing potential function W was taken to be a harmonic function of the order
parameter, i.e. the size n of the largest cluster,

W [n(rN )] =
1

2
kn[n(r

N )� n0]
2; (4.44)

where rN denotes the atomic coordinates. The constants kn and n0 determine the width
and the \location" of the window. In order to determine the size of the cluster, we have
used the techniques to identify solid clusters as explained in chapter 3. As our method
of identifying solidlike particles is rather insensitive to the type of ordering, we do not
favor one crystalline structure over the other.

In principle one could recalculate the size of the cluster after every trial displace-
ment of a particle. However, this is computationally expensive. We therefore adopted a
di�erent procedure. We �rst perform a sequence of unbiased Monte Carlo cycles, that
is, according to the potential of the original system, U(rN). We then recalculate the
size of the cluster and accept the trajectory according to exp[���W (�(rN))], where
�W (�(rN)) is the di�erence in biasing potential before and after the sequence of un-
biased Monte Carlo cycles. This ensures that we generate con�gurations according to
exp[�(U(rN) +W (�(rN)))].

Fig. 4.1 shows the Gibbs free energy of a crystalline nucleus as a function of its size
n. With the new scheme we can sample all cluster sizes with equal accuracy. In order to
illustrate this we have shown in Fig. 4.2 a snapshot of all solidlike particles in the system
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Figure 4.2 Snapshot of all solid particles in the r�12:5 system at the
precritical side of the nucleation barrier, at 25% supercooling (P = 22:54,
T = 0:75). The size of the large solid cluster in the middle is 150 particles.

when it is at the liquid side of the barrier. The large solid cluster in the middle of the
box, comprising 150 particles, is clearly seen. To illustrate the di�erence with the old
method, we have taken this con�guration as the starting con�guration for a run using
the old, global order parameter Q6. In Fig. 4.3 the size of the largest cluster present in
the system is given as a function of \time". Initially, the size of the cluster drops because
the system has to adjust itself to the new biasing potential. After that the size of the
cluster 
uctuates for 5000 cycles. Then, however, the size suddenly decreases to reach
a new, much smaller plateau value. It is clear that using the global order parameter
Q6 the large precritical nucleus breaks up into many small crystallites. In fact, the
process is \reversible", that is, if we use as the starting con�guration for a run with the
new order parameter, a con�guration with only many small clusters and not a single
relatively large cluster, we �nally end up with a con�guration containing one relatively
large cluster, and some very small clusters that are always present in the supercooled
liquid.

In summary, using a combination of umbrella sampling [26] and \blue-moon" ensem-
ble simulations [30, 31], it is possible to compute nucleation rates at moderate super-
saturation. However, it is useful to choose a local rather than a global order parameter
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Figure 4.3 The size of the largest cluster present in the system as a
function of the number of Monte Carlo cycles using the old global order
parameter Q6. As the starting con�guration we have taken the precritical
con�guration that is obtained with the new scheme, see Fig. 4.2.

as a reaction coordinate, because in the case of a global order parameter, nuclei may
spontaneously break up for entropic reasons.





5 Gas-Liquid nucleation in a
Lennard-Jones system

We report a computer-simulation study of homogeneous gas-liquid nucleation in a Lennard-
Jones system. Using umbrella sampling we compute the free energy of a cluster as a
function of its size. A thermodynamic integration scheme is employed to determine the
height of the nucleation barrier as a function of supersaturation. Our simulations il-
lustrate that the mechanical and the thermodynamical surfaces of tension and surface
tension di�er signi�cantly. In particular, we show that the mechanical de�nition of the
surface tension cannot be used to compute the barrier height. We �nd that the relations
recently proposed by McGraw and Laaksonen (J. Chem. Phys. 106, 5284 (1997)) for
the height of the barrier and for the size of the critical nucleus are obeyed.

5.1 Introduction

The spontaneous formation of liquid droplets in a supersaturated vapor is probably
the best known example of homogeneous nucleation. In view of its great practical
importance, a large number of experimental studies of gas-liquid nucleation have been
reported and the earliest theoretical description dates back to the 1920's [4, 5].

In recent years, research on gas-liquid nucleation has received a new impetus. This
is partly due to the emergence of sophisticated experimental techniques that make it
possible to measure nucleation rates with unprecedented accuracy [15, 16]. The so-
called nucleation theorem [15, 55{57] makes it possible to deduce, from the experimental
data on the nucleation rate, detailed information about the size and composition of the
critical nucleus [15, 50, 94, 95]. In parallel, modi�cations and extensions of the classical
nucleation theory have been proposed [54, 96{99] and novel theoretical tools [14] have
made it possible to go beyond the essentially macroscopic description that lies at the
basis of classical nucleation theory. In particular, expressions for the height of the barrier
and for the size of the critical nucleus have been proposed that could provide a possible
explanation for the systematic discrepancies between classical nucleation theory (CNT)
and experiment [12, 13]. Furthermore, much theoretical progress has been made in
calculating the Tolman length [45], which is an important quantity in nucleation as it
describes how the surface free energy changes with droplet size.

However, despite the fact that nucleation rate measurements have become increas-
ingly accurate, many of the theoretical predictions are di�cult to test directly in an
experiment as they are concerned with the microscopic structure of the critical nucleus.
Computer simulation is a natural tool to study the details of the nucleation process,
because it yields essentially exact microscopic information about the model studied.
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Liquid clusters in vapor have been studied in detail by computer simulation [46, 100{
106]. Most of these simulations were done in the canonical ensemble, that is, at constant
number of particles N , constant temperature T and constant volume V . A simple anal-
ysis [102, 105] of the change in Helmholtz free energy when a liquid droplet is formed
from the vapor shows that a liquid cluster can be in equilibrium with the vapor in a
constant volume simulation. However, in most nucleation experiments the pressure or,
equivalently, the chemical potential of the vapor, is held constant. Classical nucleation
theory also usually considers the nucleation of a liquid drop from the vapor at constant
chemical potential, i.e. at constant pressure of the vapor. Therefore, one would like to
perform a simulation at constant pressure rather than a constant volume. At constant
pressure a liquid cluster can be in equilibrium with the vapor at the top of the nucle-
ation barrier. However, this equilibrium is unstable. If a cluster, due to spontaneous

uctuations, becomes larger than the critical size, it will grow, because in that way it
can minimize its excess free energy. On the other hand, if a cluster by chance becomes
smaller than this critical size, it will shrink, again because in that way it can lower its
excess free energy.

Hence, in a standard NPT simulation it is virtually impossible to study a critical
cluster. However, using the umbrella-sampling scheme [26] it is possible to stabilize
the critical cluster at constant pressure. But, what is more important, it also makes it
possible to stabilize the precritical (and postcritical) nuclei, thus allowing us to compute
the excess free energy of a cluster as a function of its size at constant pressure. Hence,
with the umbrella-sampling technique we obtain not only structural information about
the precritical and critical nuclei, but also about the height of the nucleation barrier.
Moreover, the umbrella sampling technique can be combined with a thermodynamic
integration scheme, which enables the e�cient computation of the height of the barrier
as a function of supercooling.

This integration scheme is not only e�cient, but also very accurate and allows us to
test several theoretical predictions. First, we examine to what extent the nuclei behave
like small droplets of bulk liquid, which is one of the main assumptions of classical nu-
cleation theory. We then compare the size of the critical nuclei and the height of the
nucleation barrier with the corresponding predictions of classical nucleation theory. Fur-
thermore, we have investigated whether the deviations from classical nucleation theory
can be accounted for by a curvature correction to the surface tension, as proposed by
McGraw and Laaksonen [12, 13].

We have also computed the Tolman length [42], which describes the lowest order cor-
rection to the surface tension. As discussed in chapter 2, the Tolman length is de�ned
as the di�erence in position between the equimolar dividing surface and the thermody-
namically de�ned surface of tension. It is possible to give both a mechanical de�nition
and a thermodynamic de�nition of the surface tension and surface of tension of a liquid
droplet (see [40, 41]). However, we �nd that both de�nitions are not equivalent, which
means that we cannot obtain the Tolman length from the mechanical description of the
droplet. More importantly, this also implies that we cannot use a simple \mechanical"
expression to compute the height of the nucleation barrier. Our simulations illustrate
the fact that the thermodynamic and mechanical de�nitions cannot be used interchange-
ably and that any attempt to do so leads to an incorrect estimate of the height of the
nucleation barrier.
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We have performed our simulations for a Lennard-Jones system. The choice for
this system was motivated by several factors. First of all, the phase behavior of this
system is known [79]. Secondly, gas-liquid nucleation in this system has also been studied
extensively with density functional theory [107{109]. And �nally, the Tolman length has
been computed both numerically and theoretically for the Lennard-Jones system [45{47].

The rest of the chapter is organized as follows. In the next section, we give relations
for the cluster size distributions in terms of the free energy of the clusters. We then
describe the numerical techniques to calculate the cluster size distributions and the
nucleation barriers. In section 5.4 we discuss how we can obtain the mechanically and
thermodynamically de�ned surface tension and surface of tension. We then give the
computational details of the simulations in section 5.5 and in section 5.6 we discuss the
results.

5.2 Cluster-size distribution

In order to perform a numerical study of the formation of a liquidlike droplet from
the vapor phase, we need an unambiguous de�nition of an incipient liquidlike cluster.
In what follows, we use an approach that is quite similar, but not quite identical, to
the one introduced more than thirty years ago by Stillinger [110]. Consider a vapor in
a constant volume V , at constant temperature T and at constant chemical potential
�. In gas-liquid nucleation the density of liquidlike clusters is usually so low that the
interactions between them can be neglected. Furthermore, let us assume that we have
a criterion that enables us to de�ne which particles make up a liquid cluster. As shown
in section 4.2 of chapter 4, the average number Nn of clusters of size n is then given by

hNni = Zn exp[��n]: (5.1)

Here � � 1=kBT is the reciprocal temperature, kB is Boltzmann's constant, and Zn is
the partition function of the n-mer. It is given by

Zn =
V n3

�3nn!

Z
dr0

n�1
exp[��Wn(r

0n�1;�)]: (5.2)

Here � � h=
p
2�mkBT is the thermal De Broglie wavelength, r0n�1 denotes the coor-

dinates with the prime indicating that the coordinates are taken with respect to the
center-of-mass of the cluster, and W is the potential of mean force. The potential of
mean force is obtained by carrying out the integration over the coordinates of the vapor
particles. That is, all possible con�gurations of the vapor particles will contribute to W ;
it is the average potential the particles in the liquid clusters feel, due to all interactions
with the "solvent" particles. As shown in section 4.2, our cluster criterion is absorbed
into the de�nition of the potential of mean force. All con�gurations of the particles in
the cluster that do not satisfy the cluster criterion will not contribute to the partition
function. To illustrate this, let us consider a cluster of non-interacting particles. The
partition function of such an n-mer is

Zn =
V n3

�3nn!

Z
dr0

n�1
w(r0

n�1
); (5.3)
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where the function w(rn�1) is de�ned to be one, if its arguments satisfy the cluster
criterion, and zero otherwise. Note that the volume of this \ideal-gas cluster" is well-
de�ned and that the cluster criterion provides a natural volume scale for the cluster [11].

If we de�ne the free-energy of an n-mer as

Fn � �kBT lnZn; (5.4)

Eq. (5.1) can be rewritten as

hNni = exp[��(Fn � n�)] = exp[���F ]: (5.5)

An expression very similar to the one above has been obtained by Reiss et al. [106, 111{
115]. The only di�erence is that we make fewer assumptions: Reiss et al. assumed that
the surrounding gas is ideal and that there is no interaction between molecules that are
inside the cluster and those outside. Instead, we have carried out the integration over
the coordinates of the non-cluster (\solvent") particles, and the e�ect of the surrounding
phase is adsorbed into the e�ective interactions between the particles that make up the
cluster. Note also that, in the present description, we need not introduce the concept
of a \shell-molecule" to arrive at an unique de�nition of the clusters [106, 112{115] {
whether or not a molecule belongs to a cluster is uniquely de�ned by our cluster criterion.
In particular, the present approach allows for monomeric clusters. Of course, we still
have to specify the cluster criterion. Our choice for this function is described in detail
in section 5.5. Here it su�ces to say that it enables us to identify which particles in
the system have a liquidlike density; all liquidlike particles that are connected make up
a cluster. An added advantage is that the present approach does not su�er from the
problem of redundant counting of con�guration space [11, 111, 112]. Furthermore, the
present scheme can easily be used to study crystal nucleation. In crystal nucleation
the density di�erence between the crystallite and the surrounding liquid is usually so
low that the interactions between the cluster and the surrounding medium cannot be
ignored.

In practice, it is useful to express the number of clusters of size n (that is extensive)
in terms of a probability (that is intensive)

P (n) � Nn

N
; (5.6)

where N is the total number of particles in the system. This, in turn de�nes an intensive
Gibbs free-energy of the cluster (where the reference state is the homogeneous phase):

�G(n) � �kBT ln[P (n)]: (5.7)

The average number of clusters of size n is then given by

hNni = N exp[���G(n)]: (5.8)

5.3 Nucleation barrier

5.3.1 The free-energy barrier as a function of droplet size

The probability distribution function P (n), as de�ned in Eq. (5.6), is an equilibrium
property and can be measured both by Monte Carlo (MC) and by Molecular Dynamics
(MD). However, at experimentally accessible degrees of supersaturation, the brute force
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approach, in which we would simulate the supersaturated vapor, either by MC or by MD,
and simply count the liquid clusters that spontaneously appear, would never yield an
accurate measure of the nucleation barrier. In experiments, the height of the nucleation
barrier is typically in the order of 75kBT . This means that the probability to �nd
a cluster that has the critical size is extremely small, of the order of 10�30. Hence,
the numerical accuracy of any direct simulation will be very poor. To obtain good
statistics for all values of n, we therefore use the umbrella sampling scheme of Torrie
and Valleau [26]. The basic idea of this scheme is to bias the sampling of con�guration
space and correct for the bias afterwards.

We can bias the sampling by adding a �ctitious potential to the true potential of
our original system. In our study on crystal nucleation in a Lennard-Jones system, we
used a biasing potential that was a function of a global order parameter, Q6. This
order parameter measured the overall degree of crystallinity in the system and served
as a reaction coordinate from the liquid to the solid. By using the biasing potential we
could move the system along the reaction coordinate from the liquid to the solid, and
vice versa. In the same spirit, we could now apply a biasing potential that depends
on an order parameter which is sensitive to the total number of liquid particles in the
supersaturated vapor. By increasing the value of this order parameter, using the biasing
potential, we could then cross the nucleation barrier and force the system to condense.

However, as explained in detail in chapter 4, the use of a global order parameter has
some serious drawbacks from a computational point of view. The reason is the following:
if we use the total amount of the new phase as a reaction coordinate, then the value of
this reaction coordinate tells us how much of the new phase (say, liquid) we have, but
now how it is distributed in space. In particular, the new phase need not be concentrated
in one cluster. In fact, in a su�ciently large volume it is always entropically favourable
for a cluster to break up in smaller fragments. However, for the nucleation process, we
are interested in the properties of the largest connected cluster.

Rather than using a global order parameter, we therefore use a local order parameter.
We de�ne the order parameter to be the size, n, of the largest liquid cluster in the system
present. The advantage of this scheme is that by using a biasing potential which is a
function of this order parameter, we can directly control the size of one cluster and
sample all sizes of this cluster with equal accuracy. The functional form of the biasing
potential W was taken to be harmonic,

W [n(rN )] =
1

2
kn
�
n(rN )� n0

�2
; (5.9)

where rN denotes the atomic coordinates. The result of adding this potential to the true
potential of our model system is that in every run a \window" of cluster-sizes will be
sampled. The width and \location" of this window depend on kn and n0. By increasing
n0 we can increase the size of the cluster.

5.3.2 The free-energy barrier as a function of supersaturation

In principle, one could compute the height of the free-energy barrier for every degree of
supersaturation by the scheme discussed in the previous section. However, calculating
the free-energy curve all the way up to the top of the barrier is rather time consuming
because a lot of \windows" have to be simulated.
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We therefore followed a di�erent approach. Only for one pressure we compute the
full nucleation barrier by the umbrella-sampling technique as outlined in the previous
section. This free-energy barrier is then used as a reference for the calculation of the
height of the free-energy barrier at other supersaturations. The main idea is that for
every pressure we only have to perform two simulations: one in the metastable vapor
phase and one at the top of the barrier. For both states we can determine the variation
of the free energy with pressure, from which we obtain how the height of the nucleation
barrier changes with pressure. By linking the variation of the barrier height with the
height of the barrier at the reference pressure, we then obtain the height of the nucleation
barrier as a function of total pressure.

To make this more explicit, consider the (Landau) Gibbs free energy G, which is a
function of the number of particles N , the pressure P , the temperature T and the size
of the cluster n. The �rst di�erential of the Gibbs free energy is

dG(N;P; T; n) = �(n)dN + V (n)dP � S(n)dT +

@G

@n

����
N;P;T

dn;
(5.10)

where � is the chemical potential, V is the volume and S is the entropy of the system.
At constant total number of particles and temperature, Eq. (5.10) reduces to

dG(N;P; T; n) = V (n)dP +
@G

@n

����
N;P;T

dn: (5.11)

Using the above equation, we can now compute the change in free energy when the
pressure is varied. When we alter the pressure, the position of the top of the barrier,
denoted by n�, can change. However, at the top of the barrier, the partial derivative of
the free energy G with respect to size n, @G

@n
, is zero, so the last term in Eq. (5.11) drops

out. In the metastable vapor n = 0 and remains zero, so also for the vapor phase the
last term is zero. So we have for the top of the barrier

dG(n�) = V (n�)dP; (5.12)

and, similarly, for the vapor phase,

dG(0) = V (0)dP; (5.13)

from which we obtain for the variation of the barrier height �G� with pressure

d�G� = d [G(n�)�G(0)] = [V (n�)� V (0)] dP: (5.14)

The height of the free-energy barrier at a pressure P can now be obtained taking the
height of the barrier at the reference pressure Pref , as obtained by the umbrella-sampling
technique, and by integrating Eq. (5.14):

�G�(P ) = �G�(Pref) +

Z P

Pref

[V (n�)� V (0)] dP
0

: (5.15)

In order to obtain a good measure for the volume at the top of the barrier, we have
to determine the top of the barrier with a high accuracy, as the volume of the system
strongly depends on the value of the order parameter, i.e. the size of the largest cluster.
We therefore performed for every pressure not one but three simulations near the top of
the barrier: one at the estimated top, and one at each side. The cluster-size probability
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distribution functions of these three simulations were �tted to a polynomial to get the
relative free energies (via Eq. (5.7)) of the droplets in the vicinity of the top of the
barrier. From this we could then deduce the position of the top of the barrier. Finally,
to obtain the volume at the top of the barrier, the value of the critical droplet size
was inserted into the expression for the volume as function of droplet size, which was
obtained by �tting the volume histograms to a polynomial.

5.4 Tolman length and surface of tension

The surface of a droplet in the vapor is not sharp. Rather, it is a transition layer of
physical inhomogeneity in which the properties of the 
uid change smoothly. However,
it is convenient to treat the actual droplet in the vapor as being uniform up to an
imaginary surface of zero thickness, the so-called dividing surface, which separates the
droplet from the (uniform) vapor.

The position of this dividing surface can be obtained via a thermodynamic route
and via a mechanical route. However, both approaches are not equivalent. Below, we
indicate how we have computed both the thermodynamically and mechanically de�ned
surface tensions and surfaces of tension. In section 5.6.5 we show that the mechanical
route cannot be used to compute the height of the nucleation barrier.

5.4.1 Thermodynamic description

In the thermodynamic approach, introduced by Gibbs [3], one can derive the generalized
Laplace equation (see section 2.2.2), which relates the pressure di�erence over the drop
�p to the location, R, of the dividing surface, and to the surface tension 
:

�p =
2
(R)

R
+
@
(R)

@R
: (5.16)

Here �p = pl�pv, with pl and pv the pressure in the liquid and vapor region, respectively.
Of course, the pressure in the vapor is always well de�ned and is equal to the pressure
of a homogeneous (bulk) vapor phase with the same density as the density in the vapor
region far away from the drop. When the droplet is large enough then the pressure inside
the drop is also well-de�ned and is equal to that of a bulk liquid phase with a density
which equals that of the density in the core of the drop. However, for smaller droplets
the pressure in the core may di�er from the bulk liquid pressure. Yet, it is important
to realize that the generalized Laplace relation is derived from the hypothetical model
system, in which the actual droplet is replaced by a droplet that has bulk properties; i.e.
it is uniform in density and pressure up to the dividing surface. Therefore, the pressure
pl in the drop is that of a hypothetical bulk liquid phase which has a chemical potential
�l(pl; T ) that is equal to the chemical potential �v(pv; T ) of the (bulk) vapor phase at
pressure pv.

The thermodynamically de�ned surface of tension is the surface for which the second
term on the right-hand side of Eq. (5.16) vanishes. Another natural choice for the
dividing surface is the equimolar dividing surface, which is de�ned as the surface for
which the excess number of particles at the surface is zero (see section 2.2.4). The
Tolman length [42] �T is usually de�ned as the di�erence � between these two dividing
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surfaces in the planar limit

�T � lim
Re;Rs!1

� = lim
Re;Rs!1

(Re � Rs); (5.17)

where Re is the radius of the equimolar dividing surface and Rs is the radius of the
surface of tension.

We have shown in chapter 2 that for any choice of the dividing surface the (Gibbs)
free-energy of a droplet with radius R is given by (see Eq. (2.40))

�G� = �4

3
�R3�p+ 4�R2
(R); (5.18)

where �p is given by the generalized Laplace equation, i.e. Eq. (5.16). If we take for
the dividing surface the surface of tension, then Eq. (5.18) reduces to

�G� =
4

3
�R2

s
s; (5.19)

or, equivalently,

�G� =
2

3
��pR3

s: (5.20)

We have used the above equation, with �G� and �p obtained from the simulations, to
compute the thermodynamical surface tension and surface of tension.

5.4.2 Mechanical description

The thermodynamic description of droplets is macroscopic in nature. In order to estab-
lish a link with molecular properties, it would seem more natural to use a mechanical
picture. This approach would allow one to relate the surface tension and surface of
tension of a droplet to microscopic quantities, such as the pressure tensor. However, the
mechanical and thermodynamic de�nition are not equivalent. As a result, the surface
tension and dividing surface that are computed mechanically cannot be used to predict
the height of the nucleation barrier. In fact, our simulations show that the mechanical
route may lead to unphysical results. Below we discuss the mechanical description.

By considering the force and moment acting on a hypothetical strip cutting the
surface of the drop, Bu� showed that is possible to obtain a mechanical de�nition of the
surface tension [40, 41, 116]. The position, Rs;m, of the surface of tension is given by

Rs;m =

R
1

0
[plv(r;Rs;m)� pT (r)] r

2drR
1

0
[plv(r;Rs;m)� pT (r)] rdr

; (5.21)

and the surface tension, 
s;m, acting on the surface of tension is given by


s;m =
1

Rs;m

Z
1

0

[plv(r;Rs;m)� pT (r)] rdr (5.22)

and also by


s;m =
1

R2
s;m

Z
1

0

[plv(r;Rs;m)� pT (r)] r
2dr: (5.23)

In the above equations pT (r) is the tangential pressure and plv is a step function, such
that plv(r;Rs;m) = p0l for r < Rs;m and plv(r;Rs;m) = pv for r > Rs;m. The subscript
m indicates that we consider the mechanical surface of tension. There are two logical
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choices for p0l: the �rst is the one introduced below Eq. (5.16), namely the pressure of
the bulk liquid at the chemical potential of the vapor. The second is the actual, local
pressure in the core of the droplet. For some of the relations that we will employ, we can
choose either de�nition. However, as we indicate below, in some equations the choice is
not free - only the second de�nition can be used.

From the hydrostatic equilibrium condition r � p = 0 we obtain [40, 41]

rnv pN (rv)� rnl pN(rl) =

Z rv

rl

[(n� 2)pN(r) + 2pT (r)] r
n�1dr; (5.24)

where pN(r) is the normal component of the pressure tensor, rv denotes a position far
away from the drop in the vapor, and rl is a position in the drop. Integrating the
step-function plv(r;R�) yieldsZ rv

rl

plv(r;R�)nrn�1dr = rnv pv � rnl p
0

l +R�
n

(p0l � pv) (5.25)

Far away from the drop the local pressure is equal to the vapor pressure, i.e. pN (rv) =
pT (rv) = pv. Furthermore, if we take rl at the center of the drop, i.e. rl = 0, then
Eq. (5.24) can be subtracted from Eq. (5.25) to give

p0l � pv =
1

R�n

Z rv

0

fn[plv(r;R�)� pN(r)] + 2[pN(r)� pT (r)]grn�1dr: (5.26)

The actual value of pN(rl) drops out of the above equation provided that rl = 0 and
n 6= 0. Under those conditions we are free to choose our de�nition of p0l. However, for
n = 0 the choice of p0l is no longer free. In that case, we must take p0l equal to the normal
component of the local pressure in the center of the droplet, i.e. p0l = pN(0). Note that
with this choice for p0l we need not choose rl = 0 to arrive at Eq. (5.26). In what follows
we therefore take p0l to be the local pressure in the center of the droplet. We stress that,
except for very large droplets, this de�nition di�ers from the thermodynamic one.

For n = 2 Eq. (5.26) reduces to

p0l � pv =
2

R�2

Z
1

0

[plv(r;R
�)� pT (r)]rdr: (5.27)

This relation is valid for any position of the dividing surface. If we position the dividing
surface at the thermodynamic surface of tension with radius Rs we obtain

p0l � pv =
2

R2
s

Z
1

0

[plv(r;Rs)� pT (r)]rdr: (5.28)

If the core of the droplet behaves as a bulk liquid, that is, if the actual pressure p0l in
the droplet is equal to the pressure pl of a bulk liquid with a chemical potential that
is equal to that of the vapor phase, then we can combine the above equation with the
Laplace equation, Eq. (5.16), to arrive at


s =
1

Rs

Z
1

0

[plv(r;Rs)� pT (r)] rdr: (5.29)

This equation has the same structure as Eq. (5.22). However, this does not imply that
the thermodynamic and mechanical surface tensions and surfaces of tensions are equal.
In fact, Blokhuis et al. [45] have shown that the positions of the surfaces can di�er
signi�cantly and our simulations show that in fact they do.
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It is possible to relate Rs;m and 
s;m to p0l � pv in an expression, which, to increase
the confusion, looks like the Laplace relation. We take R� = Rs;m in Eq. (5.27) and
combine the resulting expression with Eq. (5.22), to arrive at

p0l � pv =
2
s;m
Rs;m

: (5.30)

So also for the mechanically de�ned surface tension and surface of tension, a Laplace-
type relation is ful�lled. We can now exploit this relation to express Rs;m and 
s;m in
terms of pN (r)�pv, from which we can compute the mechanically de�ned surface tension
and surface of tension. We start by combining the above equation and Eq. (5.26) with
n = 3 and with R� = Rs;m, and subtract the resulting expression from Eq. (5.23), to
obtain Z rv

0

[plv(r;Rs;m)� pN (r)]r
2dr = 0: (5.31)

This equation can be combined with Eq. (5.23) to yield


s;m =
1

R2
s;m

Z
1

0

[pN (r)� pT (r)]r
2dr: (5.32)

In Refs. [40, 41] it is suggested that a similar expression can be derived for the thermody-
namically de�ned surface tension by combining the expression following from Eq. (5.26),
with n = 3 and R = Rs, and the generalized Laplace equation (Eq. (5.16)) with
Eq. (5.23). However, in order to arrive at this result one has to make the assumption
that the mechanical and thermodynamic description are equivalent.

We do not make the identi�cation between the thermodynamic and mechanical de-
scription. Instead, we make use of the fact that also for the mechanically de�ned surface
of tension a Laplace-type relation holds and use the relations that follow from the hy-
drostatic equilibrium condition for this dividing surface. For instance, it is possible to
obtain another expression for the mechanically de�ned surface tension by combining
Eq. (5.30) with Eq. (5.26) for n = 0 and R� = Rs;m


s;m = Rs;m

Z
1

0

[pN (r)� pT (r)]r
�1dr: (5.33)

We can obtain the position of the mechanical surface of tension by combining the above
equation with Eq. (5.32)

R3

s;m =

R
1

0
[pN (r)� pT (r)] r

2drR
1

0
[pN (r)� pT (r)] r�1dr

: (5.34)

The three above equations can be rewritten using

pT (r) = pN(r) +
r

2

dpN(r)

dr
; (5.35)

which follows from the condition of hydrodynamic equilibrium, r � p = 0. We then
obtain

R3

s;m =
3

�p

Z
1

0

[pN(r)� pv]r
2dr; (5.36)
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3s;m =
3

8
�p2

Z
1

0

[pN (r)� pv]r
2dr: (5.37)

where �p = p0l� pv. We have used these equations to compute the mechanically de�ned
surface tensions and surfaces of tension.

In the thermodynamic model the height of the barrier is given by Eq. (5.20). It
is clear that if the mechanical and thermodynamic description would be equivalent,
combining Eq. (5.20) with Eq. (5.36) would yield a microscopic expression for the height
of the barrier (Eq. (5.38), see Refs. [12] and [117]). However, as the mechanical and
thermodynamic pictures cannot be mixed, the height of the barrier cannot be expressed
in terms of an integral of the pressure pro�le,

�G� 6= 2�

Z
1

0

[pN (r)� pv]r
2dr; (5.38)

Figure 5.5 illustrates the kind of errors that may result if the mechanical and thermo-
dynamic pictures are confused.

We stress that the distinction between mechanical and thermodynamic expression
for the surface tension should not be confused with the ambiguity in the de�nition of the
microscopic stress tensor. Scho�eld and Henderson [118] have proposed a general expres-
sion for the stress tensor. This expression re
ects the freedom that we have in de�ning
the momentum 
ux density in a 
uid. The commonly used Irving-Kirkwood pressure
tensor [119], and the Harasima pressure tensor [104, 118, 120, 121], are special cases of
the Scho�eld-Henderson expression. Both from simulations [121] and from theory [118]
these expressions are known to give the same surface tension for a planar interface, as
the surface tension is related to the zeroth moment of pN(r) � pT (r). However, the
position of the mechanical surface of tension, which is related to the �rst moment, is
not insensitive to the choice of the pressure tensor. The Irving-Kirkwood expression
appears to be the most natural choice as the contour joining two interacting particles,
which determines where the force is acting, corresponds to a straight line. Furthermore,
Blokhuis et al. [45] showed that the Irving-Kirkwood pressure tensor, in contrast to the
Harasima pressure tensor, leads to expressions for the pressure di�erence, the surface
tension and the Tolman length, that agree with expressions found using microscopic sum
rules. We have therefore used the Irving-Kirkwood expression for the pressure tensor to
compute the pressure pro�les.

5.5 Computational details

We have studied homogeneous gas-liquid nucleation in a Lennard-Jones system in which
the interaction potential was truncated and shifted at a cuto� radius rc = 2:5�, where �
is the particle diameter. We made no long-range corrections and applied cubic periodic
boundary conditions. In what follows, we use reduced units, such that the Lennard-
Jones well depth � is the unit of energy, while the Lennard-Jones diameter � is the unit
of length.

In most experimental studies of homogeneous nucleation, the volume is �xed and
nucleation of liquid droplets from the vapor phase leads to a decrease of the vapor
pressure. However, as the concentration of nuclei is very small, the drop in vapor pressure
is negligible and the pressure and chemical potential e�ectively remain constant during
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the nucleation process. In principle, we could simulate the experimental situation by
performing a NV T simulation. A large excess number of vapor particles would then be
needed in order to keep the vapor pressure constant, which can be achieved by simulating
a very large system. However, this would make the simulations unnecessarily expensive.
It is much more natural to work in the NPT or in the �V T [122] ensemble. In the NPT
ensemble, as the droplet is formed, the volume is adjusted such that the pressure (and
the chemical potential) in the vapor will remain constant. In this ensemble it is therefore
not necessary to simulate a large number of vapor particles. The same holds for the �V T
ensemble. However, in this approach the insertions and removals of particles from the
system is required, which can be ine�cient or even impossible at high densities. We
haven chosen to work in the NPT ensemble.

In our simulations, we need an operational de�nition of liquidlike clusters. We do
this by making a distinction between particles that have a liquidlike and a vapor-like
environment. liquidlike particles are particles that experience a local density that is
signi�cantly higher than that of the vapor. There is no unique de�nition of the local
density surrounding a particle. In what follows, we use the number of particles within a
spherical shell of radius qc as a measure of the local density. The distribution functions
of the number of neighbors per particle in the liquid and in the vapor are shown in
Fig. 5.1. Note that the distribution functions hardly overlap. We have therefore adopted
the criterion that all particles that have more than four neighbors are considered to be
liquidlike.

After we have identi�ed which particles in the system are liquidlike, we can determine
the liquidlike clusters. We have applied the criterion that any two liquidlike particles
that have a distance less than qc = 1:5 (which corresponds to the �rst minimum in
the radial distribution function of the liquid) belong to the same liquid cluster. Note
that our de�nition of a cluster is close to the one used by Stillinger [110], but not
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quite equivalent. Stillinger adopted the criterion that any two particles that are within
a certain cuto� distance belong to the same cluster. So even particles that, in our
de�nition, are considered to be vapor particles can be part of a liquid cluster according
to Stillinger's criterion.

The nucleation barrier can be measured both by MC and MD. The advantage of
MD is that it gives faster equilibration of pressure gradients through collective particle
motions. However, with MD the di�usion of the system through the order-parameter
window in the umbrella-sampling simulations is rather slow. The density in the vapor
is very low and in MD both the liquid and vapor particles move on the same time
scale. Therefore, in MD the 
uctuations in the size of the largest cluster, i.e. the order
parameter, are limited by the in
ux of particles from the vapor.

The advantage of MC is that it is particularly suited for the umbrella sampling
scheme as, in contrast to MD, the forces associated with the biasing potential do not
have to be calculated. Furthermore, one can perform tricks to facilitate the sampling
of con�guration space. In order to speed up the di�usion of particles in the vapor,
the particles in the vapor phase are given a di�erent maximum displacement from the
particles in the liquid phase. Of course, this introduces a bias which needs to be corrected
for in order to satisfy detailed balance. This is described in the Appendix 5.7.

We have tested both MD and MC by determining the \di�usion constant" of the
order parameter at the top of the barrier. It was found that per MD-timestep or per
MC cycle (in which on average every particle is given one trial displacement)s

h�n2iMC
h�n2iMD

� 7� 8: (5.39)

However, the number of cycles performed per unit of CPU-time was three times higher
for MD, so that the e�ective di�usion constant for MC was about two to three times that
of MD. We did use MD to speed up the equilibration, but most of the actual simulations
were performed using MC sampling.

In the umbrella sampling scheme, the system should sample con�guration space
according to the potential

Ui(r
N) = Uo(r

N) +W [n(rN )]; (5.40)

where Uo(r
N) is the potential of the original model system and W [n(rN )] is the biasing

potential as de�ned in Eq. (5.9). In principle, we could recompute the size of the
largest cluster and the biasing potential after every MD or MC cycle, or even after
every particle displacement in the MC simulations. However, this would be far too time
consuming. We therefore adopted a staged scheme. In the �rst stage a series of MD
or MC cycles is performed without the biasing potential. In the second stage, after the
unbiased trajectory, the size of the cluster and the biasing potential are recalculated.
To ensure that con�guration space will be sampled in accordance with the potential in
Eq. (5.40), the trajectory is then accepted with a probability which is determined by
exp[���W [n(rN )]], where �W [n(rN)] is the di�erence in biasing potential before and
after the trajectory.

In the MC simulations, each trial move consisted either of an attempted particle
displacement or a trial volume change. The choice between trial particle moves and trial
volume moves was made at random. As we used a �xed cuto� in real coordinates for the
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persaturation
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(T = 0:741, P =
0:01202).

intermolecular interactions, the potential energy did not scale with a volume move and
we had to recalculate the total potential energy from scratch after every trial volume
move. Therefore a MC cycle consisted on average of only one trial volume move and one
trial displacement per particle. The acceptance ratio for both types of MC moves was
kept at 50% by adjusting the maximum size of the move. The maximum displacements
for the liquid and vapor particles were tuned independently.

The length of the trajectories depends on the computational cost of evaluating the
order parameter and the average probability with which the trajectories are accepted.
To be more precise, the e�ciency � is proportional to

� / Pacc(l)

a+ b=l
: (5.41)

Here l is the length of the trajectories and a and b denote the computational costs of
performing a MD/MC cycle and a cluster analysis, respectively. Pacc(l) is the acceptance
probability of the trajectories which depends on the trajectory length and on the force
constant of the biasing potential (as well as on the steepness of the underlying free-
energy barrier). Typically, for kn = 0:01� 0:02 a trajectory length of 50 MC cycles was
optimal. To speed up the simulations, we used both a linked list and a neighbor list for
the calculation of the energies and the identi�cation of the clusters [68].

The number of umbrella windows for the free-energy barrier was �fteen. A typi-
cal simulation in a window consisted of an equilibration period of 100000-250000 MD
steps, followed by a production run of 250000 MC cycles. The individual probability
distribution functions P (n) obtained in the di�erent runs were �tted simultaneously
to a polynomial. We used a polynomial �t rather than the self-consistent scheme of
Ferrenberg and Swendsen [77], because not all adjacent histograms overlapped.
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5.6 Results and Discussion

We studied the nucleation of liquid droplets from the vapor as a function of supersat-
uration. All simulations were performed for one temperature, T = 0:741, which is 32%
below the critical temperature (Tc = 1:085 [123]). At this temperature the pressure and
densities of the coexisting phases are known [123]. Furthermore, in order to make a
comparison with nucleation theories we have to know the surface tension. The temper-
ature of our simulations is in the range of temperatures for which Chapela et al. [124]
and, more recently, Holcomb et al. [125] computed surface tensions for planar gas-liquid
interfaces.

The number of particles was N = 864. As the size of the largest critical nucleus
obtained in the simulations, corresponding to the smallest degree of supersaturation, is
around 300 particles and, more importantly, the density in the surrounding vapor is very
low, with this number of particles the size of the simulation box was always large enough
compared to the size of the critical droplets for system size e�ects not to be present.

5.6.1 The nucleation barrier

We �rst computed the full nucleation barrier with the umbrella-sampling technique for
a reference pressure. This reference pressure was chosen to be P = 0:01202, which
corresponds to a supersaturation S = P=Pcoex = 1:53. Fig. 5.2 shows the nucleation
barrier for this degree of supersaturation.

In our simulations we are not only able to study critical droplets, but also pre-and
postcritical droplets. Visual inspection revealed that precritical droplets consisting of
only 10-25 particles are already quite spherical. We therefore computed the density
as a function of r, the distance to the center-of-mass of the cluster. Fig. 5.3 shows
the radial density pro�les for several precritical and critical clusters. Already for the
smallest droplets the density approaches a bulk liquid density in the core. We stress
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that this is not due to our choice of the cluster de�nition, which requires that a cluster
particle should have at least 5 neighbors. A radial pro�le of the number of connections
per particle shows that in the core of the liquid droplet the number of connections per
particle is much larger than the threshold value of our cluster de�nition. In fact, it also
approaches a bulk liquid value, i.e. around twelve neighbors per particle. Hence, our
results are not very sensitive to the choice of the threshold value.

Fig. 5.3 also shows that the density in the core hardly increases when the clusters
grows to its critical size n� = 280. Furthermore, the density pro�les show that the width
of the interface remains essentially constant at approximately 3:5�.

Using the Irving-Kirkwood expression for the pressure tensor [119] we also computed
the pressure pro�les for the precritical and critical nuclei. In Fig. 5.4 we show the radial
pro�les of the normal component of the pressure tensor. It is seen that all pressure
pro�les smoothly go to a bulk vapor value for large values of r, i.e. far away from the
center of the droplet. In the center of the droplet the statistical accuracy with which
the pressure can be determined is low, as the volume is small. Nevertheless, the data
suggests that, except for the smallest droplets, the pressure pro�les approach a plateau
value in the core. In fact, the pressure in the core, as well as the density (see Fig. 5.3),
approaches that of a hypothetical bulk liquid at a chemical potential that is equal to the
chemical potential in the vapor phase. This indicates that the interior of the droplets
shows bulk liquidlike behavior.

From the normal component of the pressure tensor we can also obtain the transverse
component of the pressure tensor using Eq. (5.35). This equation shows that, when the
derivative of the normal component of the pressure tensor with respect to the radius is
positive, the transverse component is larger than the normal component of the pressure
tensor. Under these conditions the surface would be under compression, rather than
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Figure 5.5 The height of the nucleation barrier as a function of super-
saturation S for T = 0:741. The solid line is obtained via a thermody-
namic integration technique, see Eq. (5.15). The dashed line is obtained
by integrating the pressure pro�le, see Eq. (5.38). It is seen that the me-
chanical route to the nucleation barrier (dashed line) does not give the
correct height of the free-energy barrier.

under tension. When the normal component is larger than the transverse component,
the surface is under tension.

Fig. 5.4 shows that most of the surface of the droplets is under tension. However,
at the vapor side of the interface the normal pressure becomes smaller than the vapor
pressure. As the pro�le subsequently approaches the bulk vapor value, it is clear that
there is a small region in which the derivative of the normal-pressure pro�le is positive. In
this region the interface is under compression, rather than under tension. This behavior
is also found in theoretical calculations, for di�erent potentials [126{128], as well as in
a computer-simulation study of liquid droplets by Thompson et al. [104], and in the
computer simulations of a 
at interface by Walton et al. [121].

5.6.2 Dependence on supersaturation

Using the method described in section 5.3.2, we computed the height of the nucleation
barrier as a function of supersaturation. Fig. 5.5 shows the free-energy barrier as a
function of supersaturation. We could not continue our simulations beyond S = 2:2,
because at this point the height of the barrier is so low, that spontaneous nucleation
of additional droplets occurs in the vapor. But before we discuss the height of the
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nucleation barrier as a function of supersaturation in more detail, let us �rst describe
qualitatively how the critical nucleus changes as the supersaturation is increased.

In Figs. 5.6 and 5.7 we show, respectively, the density and pressure pro�les for three
critical nucleus sizes. In the legends we have also indicated the excess number of particles
de�ned as

�n = 4�

Z
1

0

[�(r)� �v] r
2dr; (5.42)

where �v is the density in the vapor (far away from the droplet). Because of the di�use
nature of the interface, the size of the critical nucleus is ambiguous and depends on the
position of the dividing surface. However, the excess number of particles is independent
of the position of the dividing surface and is therefore a more meaningful quantity.

Fig. 5.6 and Fig. 5.7 show that as the supersaturation is increased, the density and
pressure in the core slowly decrease. This indicates that the droplet already starts
to loose bulk behavior in the core. If the core of the droplet would show bulk liquid
behavior, then, in order for the chemical potential in the bulk liquid core to be equal to
the chemical potential in the vapor, the density and pressure in the core of the droplet
have to increase when the pressure in the vapor is increased. Indeed, this behavior has
been observed by Thompson et al. [104] and Nijmeijer et al. [46] in their simulations of
liquid droplets. However, the droplets for which this behavior was seen, were much larger
(larger than 2000 particles), than the droplets studied here. In fact, in the simulations of
Thompson et al [104] a clear cross-over in behavior was seen for smaller droplets. In line
with the present results, they found that, once the droplets are smaller than a certain
size, the density and pressure in the core of the droplets decrease with increasing vapor
pressure. This loss of bulk behavior is also found in several molecular theories [14, 126{
128].
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Fig. 5.6 and Fig. 5.7 suggests that the width of the interface remains constant over the
range of droplet sizes studied. Note that when the droplets become smaller, the region
for which the normal pressure is smaller than the vapor pressure, increases. Moreover,
the region for which pT > pN increases as well, that is, the interface is progressively
more under compression. In fact, for the smallest droplets studied, most of the interface
is under compression rather than tension. This trend has also been observed by Falls et
al [126].

5.6.3 The nucleation theorem

The nucleation theorem is a powerful tool to analyse experimental data on homogeneous
nucleation [15, 50, 94, 95].The nucleation theorem states that the excess number of
molecules of a given component in the critical nucleus can be obtained from the variation
of the height of the barrier with the chemical potential, �v;i, of that component in the
vapor phase:

@�G�

@�v;i
= ��n�i ; (5.43)

where �n�i is de�ned as in Eq. (5.42) above.
As nucleation is a rare event, it is impossible to measure the size and composition

of critical nuclei directly in an experiment. However, if one assumes that the prefactor
in the expression for the nucleation rate depends only weakly on supersaturation, the
nucleation theorem makes it possible to determine the size and composition of the critical
nuclei as a function of the activities of the components in the vapor phase.

Several derivations of the nucleation theorem have been presented in the literature.
The original derivation by Kashchiev [55] and a later one by Viisanen et al. [95] were
based on a thermodynamic model in which the reversible work of formation of a cluster
is written as the sum of a bulk term and an excess free energy term, which includes
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contributions from the surface free energy. The nucleation theorem was obtained by
assuming that the variation of the excess free energy of the cluster depends only weakly
on the chemical potential. However, in the approach of Refs. [55] and [95] the variation
of the barrier height with the gas phase activities yields the total number of particles
in the cluster and not the excess number of particles in the cluster. Also an analysis
based on classical nucleation theory by Strey et al. [94] suggests that, from the variation
of the height of the barrier with the chemical potential in the vapor phase, the total
number of particles rather than the excess number of particles is obtained. However,
Oxtoby and Kashchiev [56], who also used a thermodynamic approach, showed that the
variation of the surface free energy with the chemical potential in the vapor phase is
related to the surface density of the molecules and that the nucleation theorem gives the
excess number of particles and not the total number of particles in the critical cluster.
All these derivations are based on thermodynamic models. It is conceivable that such
an approach fails for very small droplets. However, Ford [57] gave a derivation using
small system thermodynamics, which con�rmed that the excess number of particles in
the cluster is obtained from the variation of the height of the barrier with the gas phase
activities. Moreover, the same result was obtained from a statistical mechanical analysis
by Viisanen, Strey and Reiss [15]. In chapter 2 we have given a compact derivation which
is also based on statistical mechanics. Furthermore, this derivation also shows that the
variation of the height of the Gibbs free-energy barrier with the pressure is related to
the excess volume of the system at the top of the barrier, and that the variation of
the barrier height (both in the grand-canonical and in the isothermal-isobaric ensemble)
with T and � gives the excess entropy and excess internal energy, respectively.

In our simulations, we compute the barrier height as a function of pressure. However,
in order to compare with the nucleation theorem, we need to know the variation of
the barrier height with the chemical potential of the vapor phase. The variation of
the chemical potential with pressure is given by the Gibbs-Duhem relation: d�

dP

��
T
=
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Figure 5.8 The excess
number of particles �n� in
the critical nuclei as a func-
tion of the supersaturation
S (T = 0:741), as ob-
tained from the variation
of the height of the barrier
with the chemical potential
in the vapor phase, and as
obtained by integrating the
density pro�les. According
to the nucleation theorem
they should give the same
results.
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1=�v, where �v is the density in the vapor. In Fig. 5.8 we show the excess number of
particles in the cluster obtained via the nucleation theorem and by directly integrating
the density pro�les. It is seen that for all droplets sizes studied the agreement is excellent.
This indicates that the method to measure the height of the barrier as a function of
supersaturation described in section 5.3.2 is not only e�cient, but also very accurate.

5.6.4 Deviations from Classical Nucleation Theory

Recent experiments on gas-liquid nucleation indicate that the sizes of the critical nu-
clei are accurately predicted by classical nucleation theory [15, 50, 51]. However, the
rate of nucleation was found to be consistently higher than predicted by classical nucle-
ation theory. In fact, it was observed that the ratio of the experimentally determined
nucleation rate and the nucleation rate as predicted by CNT, although depending on
temperature, was nearly independent of the supersaturation [51]. In two recent papers,
McGraw and Laaksonen derived relations for the height of the barrier and the size of
the critical nucleus that could provide an explanation for these observations [12, 13]. In
their �rst paper [12] they gave a derivation which was based on the nucleation theorem.
In the second paper they gave a derivation which was based on the nonuniform spherical
droplet model [13]. They showed that if the nucleus has an incompressible core with a
density equal to that of the bulk phase and if the number of particles within the equimo-
lar dividing surface is correctly predicted by CNT, then the di�erence between the actual
barrier height and the height of the barrier as predicted by CNT, is independent of the
supersaturation and depends only on temperature. Using the techniques discussed in
section 5.3.2 we are able to test these predictions directly.

In classical nucleation theory the size of the critical droplet is given by

n� =
32�
3

1

3�2l��
3
; (5.44)

where 
1 is the surface free energy of the planar interface and �l is the density of the
bulk liquid at coexistence. �� is the di�erence between the chemical potential �v in the
vapor phase and the chemical potential �l in the bulk liquid phase, both at the pressure
P in the vapor phase, i.e.

��(P ) = �v(P )� �l(P ): (5.45)

In classical nucleation theory the height of the nucleation barrier is given by

�G� =
16�
3

1

3�2l��
2
: (5.46)

As the cube of the surface free-energy enters the expressions for the height of the
barrier and for the critical nucleus size, we need an accurate estimate for the surface free
energy. Chapela et al. [124] and Holcomb et al. [125] have calculated surface free energies
for a Lennard-Jones system with the same potential cuto� as used in our simulations
and for a range of temperatures that encompasses our temperature. In order to obtain
the surface free energy at our temperature we made a polynomial �t to their data and
found 
1 = 0:494.
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Figure 5.9 The number of particles in the critical nuclei as a function of
1=��3, as predicted by classical nucleation theory and as obtained from
the simulations. The number of particles predicted by classical nucle-
ation theory is indicated by n�CNT and the number of particles within the
equimolar dividing surface, as obtained from the simulations, is indicated
by n�e. For comparison we have also shown the excess number of particles,
denoted by �n�, as obtained from the simulations. According to the rela-
tions proposed by McGraw and Laaksonen [12, 13] n�e is given by classical
nucleation theory (n�CNT ).

The chemical-potential di�erence ��(P ) was computed by integrating the di�erence
in inverse density between the liquid and vapor phase from the coexistence pressure:

��(P ) =

Z P

Pcoex

�
1

�v(P 0)
� 1

�l(P 0)

�
dP 0: (5.47)

Here Pcoex is the coexisting pressure and �v and �l are the densities of the bulk vapor
and bulk liquid phase, respectively. As the chemical potential of the vapor phase de-
pends very strongly on pressure, the di�erence in chemical potential is very sensitive
to the exact location of the coexistence point. We found that the data of Smit [123]
was not accurate enough for our purpose and we therefore performed a more extensive
Gibbs ensemble simulation [129] to calculate the coexistence point. We found that the
coexistence pressure Pcoex = 0:00783 and that the density of the liquid at coexistence
�l = 0:766.

Fig. 5.9 shows the number of particles in the critical nucleus, as a function of 1=��2.
In the �gure, we compare the predictions of CNT and the numerical results for n�e, the
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Figure 5.10 The height of the barrier as predicted by classical nucleation
theory and as obtained from the simulations, as a function of 1=��2. The
relations proposed by McGraw and Laaksonen [12, 13] predict a constant
o�set between the actual barrier height and the height of the barrier as
predicted by classical nucleation theory. The dashed curve is a guide to
the eye; it has the same slope as the curve of the classical nucleation theory
prediction.

number of particles within the equimolar dividing surface:

n�e =
4��(0)

�(0)� �v

Z
1

0

[�(r)� �v] r
2dr: (5.48)

Here �v is the density in the vapor, and �(0) is the density in the core of the droplet.
The statistical error in �(0), the density in the core, is relatively large. However, as
�v � �(0), this inaccuracy has little e�ect on the value of n�e. For the same reason, n�e is
nearly equal to the better de�ned quantity �n�, which is shown in Fig. 5.9. But more
importantly, it is seen that for all droplet sizes studied, CNT gives a good estimate for
the number of particles in the critical cluster. Surprisingly, the predictions of CNT are
excellent down to the smallest droplets, which consists almost exclusively of interface.

In Fig. 5.10 we show that the simulation results support the McGraw-Laaksonen
predictions for the height of the barrier: the barrier height found in the simulations
di�ers by a constant o�set from the value predicted by CNT. This results appears to
hold even for critical nuclei consisting of only 50-100 particles. Again, this �nding is
surprising because, as discussed in section 5.6.2, the cores of these nuclei do not show
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Figure 5.11 The thermodynamically de�ned surface tension 
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s;m (acting at the respective surface
of tensions), as well as the surface tension at the equimolar dividing sur-
face, denoted by 
e, as a function of the excess number of particles in the
critical nuclei.

bulk behavior. In fact, McGraw and Laaksonen gave two derivations of their expressions
for the height of the nucleation barrier and for the critical nucleus size: one made use of
the assumption that the nucleus had an incompressible core [13], the other did not [12].
Our simulations suggest that the relations proposed in Ref. [12, 13] are quite robust.
If we have the right theoretical tools to predict the o�set, a better agreement between
experiment and (extended) CNT can be obtained [130].

McGraw and Laaksonen [13] showed that, within their non-uniform droplet model,
the o�set D(T ) is related to the rigidity coe�cient ks:

�G�

CNT ��G� = D(T ) = �4�ks ; (5.49)

where ks=R
2 is the elastic curvature free-energy per unit area) From our simulations we

estimate ks = �0:31� = �0:42kBT . This is smaller than the value that McGraw and
Laaksonen obtained in their density functional calculations [13]. However, the discrep-
ancy could well be due to the fact that we used a truncated Lennard-Jones potential,
whereas in the density functional calculations the full Lennard-Jones potential was used.

5.6.5 Tolman Length

We computed the thermodynamically de�ned surface tension and surface of tension
using Eqs. (5.19) and (5.20). As explained in section 5.4.1, �p is the di�erence between
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Figure 5.12 The radii of the equimolar dividing surface, Re, of the
thermodynamically de�ned surface of tension, Rs and of the mechanically
de�ned surface of tension, Rs;m, as a function of the excess number of
particles in the critical nuclei.

the pressure in the vapor and the pressure in a hypothetical bulk liquid with a chemical
potential equal to that of the vapor phase. We therefore performed a series of simulations
of the bulk liquid to obtain the chemical potential of the liquid as a function of P . In
Fig. 5.11 and 5.12 we show the thermodynamic surface tension and the location of the
surface of tension, respectively. For small droplets, the surface tension increases rapidly
with droplet size, and then smoothly approaches its planar limit. Such behavior has also
been found in theoretical studies [109, 126, 127].

For the sake of comparison, we have also calculated the mechanical surface tension
and surface of tension using Eqs. (5.36) and (5.37). The results are shown in Fig. 5.11
and Fig. 5.12, respectively. The �gures show that both the surface tension and the
surface of tension become negative for clusters smaller than 100 particles. The reason
for this can be understood from Fig. 5.7. As can be seen from this �gure, small droplets
have a progressively larger region where the pressure is lower than the vapor pressure. As
discussed in section 5.6.2, this implies that the surface of small droplets is increasingly
under compression. For clusters smaller than 100 particles, compression dominates and
the integral in Eq. (5.36) and (5.37) becomes negative. For a cluster size of about 100
the integral in Eqs. (5.36) and (5.37) vanishes, and both Rs;m and 
s;m cross zero.

Fig 5.12 also shows that the mechanically de�ned surface of tension and thermody-
namically de�ned surface of tension are shifted with respect to one another. If we ignore
the smallest droplets for which the radius of the mechanical surface tension becomes
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negative, the displacement is found to be constant over the range of droplet sizes stud-
ied, and equals approximately one �. It is thus clear that the two surfaces cannot be
identi�ed with each other. This was �rst pointed out by Blokhuis and Bedeaux [45] and
later also found by Haye and Bruin [47] in their computer simulation study of a planar
interface. Haye and Bruin [47] observed the displacement to be strongly depending on
temperature, but for T = 0:75, which is quite close to the temperature of the present
simulations, they also found a displacement close to one �, i.e. 0:92�.

Fig. 5.11 shows that not only the position of the surface of tension is di�erent for
the two de�nitions, but also the magnitude of the surface tension. In the planar limit
the surface tensions should become equal [40, 41], but for smaller droplets the di�erence
becomes quite signi�cant. In Fig. 5.11 we also show the surface tension at the equimolar
dividing surface. McGraw and Laaksonen [13] showed that within their non-uniform
droplet model the surface tension at the equimolar dividing surface can be obtained from
the o�set between the actual barrier height and the height of the barrier as predicted
by CNT:

�G�

CNT ��G = 4�R2

e(
1 � 
e): (5.50)

Here 
e is the surface tension at the equimolar dividing surface and Re is the radius of
the equimolar dividing surface, which is given by

R3

e =
3

�(0)� �v

Z
[�(r)� �v] r

2dr: (5.51)

The thermodynamically de�ned surface of tension is the surface for which the surface
tension is at its minimum [40, 41], hence 
s should be smaller than 
e. For the larger
droplet sizes, the (Tolman) length � � Re�Rs becomes small compared to radius of the
droplet. In that limit, we should expect the surface tensions to approach each other, as
the surface tension varies quadratically with R � Rs (see section 2.2.3, Eq. (2.17)). We
�nd that 
e and 
s are equal to within the accuracy of our simulations.

In Fig. 5.13 we have plotted � as a function of the size of the droplets. It is seen that
� is a strong function of the size of the droplet. In fact, our results are in fair agreement
with the density functional calculations of Talanquer and Oxtoby [109]. We can obtain
the Tolman length by �tting � to a polynomial and extrapolating the result to the planar
limit. We �nd that �T is zero to within the accuracy of our simulations (�0:2 < �T < 0:8).
Haye and Bruin [47] have computed the Tolman length for a range of temperatures by
molecular dynamics simulations. Within the error bars the Tolman length was found to
be independent of temperature and equal to �T = 0:16� 0:04, which is compatible with
the earlier numerical calculations by Nijmeijer et al. [46], who found that j�T j < 0:7 for
T = 0:9. Recently, Kalikmanov formulated a semiphenomenological cluster theory of
the Tolman length based on the Fisher cluster model of condensation [97] combined with
a Tolman-like ansatz for the microscopic surface tension of a cluster [131]. Kalikmanov
performed calculations for a variety of nonpolar substances [131], which show that not
too close to the critical temperature (j(T � Tc)=Tcj > 0:1) the Tolman length is positive
and about 0:2�. Considering the small droplet sizes that we have studied, our results
are in fair agreement with the previous results.

The Tolman length describes the lowest order correction to the surface tension [42].
In chapter 2 we have shown that from the Helfrich expansion of the surface tension
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corresponds to a Tolman length �T = lim�n��1=3
!0 � = 0:0, as (implicitly)

assumed in the non-uniform droplet model of McGraw and Laaksonen [13].
Clearly, our simulations do not rule out this possibility.

around the planar interface [45] it can be derived that

�T = �kCo


1
; (5.52)

where Co is the the spontaneous curvature. In chapter 2 we have shown that ks can
be related to ks = 2k + k. Hence, provided that we would know k, it would seem
that we can obtain the spontaneous curvature Co from the bending rigidity ks (via
Eq. (5.49)), and from the Tolman length and the surface tension of the planar interface

1. However, we have obtained ks using a relation derived in the model of McGraw and
Laaksonen [13]. As shown in chapter 2, the expression for the curvature dependence
of the surface tension in this model is only compatible with the Helfrich expansion of
the surface tension if the Tolman length is zero. Therefore, computing the spontaneous
curvature from Eq. (5.52) and the measured ks is internally inconsistent. In the non-
uniform droplet model of McGraw and Laaksonen it is already implicitly assumed that
the Tolman-length is zero. Our simulations suggest that, for the Lennard-Jones system,
this is a reasonable assumption.
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Here we also would like to point out that ks can be negative. The condition that
must be ful�lled is that 
(R) (see Eq. (2.31)) is positive. If 
 would not be positive,
it would be energetically favorable for a cluster to break up into smaller clusters. For
vesicles, 
1 is close to zero, which implies �2k < k < 0. For the liquid Lennard-Jones
droplets, however, 
1 is positive, and ks can be negative. We note here that the Helfrich
expansion to second order, and the relation of McGraw and Laaksonen for the surface
free energy (see Eq. (2.70)), breaks down if 
(R) becomes negative. Then higer order
terms in the expansion of the surface free energy in the inverse radii have to be taken
into account. However, in the present case, this only occurs for droplets containing fewer
than �ve to ten particles.

5.7 Conclusions

In our simulations, we have studied the structure and thermodynamics of the (pre)
critical nuclei that play a role in the homogeneous nucleation of the liquid phase from
the vapor. We found that the dependence of the size of the critical nucleus on the degree
of supersaturation is in excellent agreement with the nucleation theorem. Furthermore,
our simulations show that liquidlike clusters larger than 200 particles show bulk behavior
in the core. That is, the pressure and the density in the core of the droplets are those
of a bulk 
uid with a chemical potential equal to that of the vapor phase. However,
smaller droplets start to loose this bulk behavior. Nevertheless, the critical-nucleus sizes
are still correctly predicted by classical nucleation theory. The simulation results for
the height of the nucleation barrier di�er by a constant amount from the prediction of
classical nucleation theory, not only for large droplets, but even for quite small droplets.
This constant o�set can be accounted for by assuming that the surface tension depends
quadratically on 1=R [12, 13].

For the range of droplet sizes studied here, we �nd a signi�cant discrepancy between
the thermodynamic and mechanical description of the surface tension. Of course, one
could argue that the thermodynamic description should fail for very small droplets. But
even for larger droplets, which do show bulk liquid behavior in the core, we �nd that
the respective surfaces of tension cannot be identi�ed with each other and that the
surface tensions that follow from the di�erent de�nitions are di�erent. This implies that
the height of the nucleation barrier cannot be obtained from Eq. (5.38). The failure
of this equation is clearly illustrated by Fig. 5.5. The discrepancy between the free-
energy barriers obtained by the thermodynamic and mechanical approaches is quite
large, around 10�40kBT . In fact, as this �gure shows, the mechanical route leads to an
estimate for the height of the barrier that even becomes negative{this is due to the fact
that the integral of the pressure pro�le in Eq. (5.38) becomes negative. Hence, at present,
there seems to be no \cheap" numerical alternative to the direct (umbrella-sampling)
approach to compute nucleation barriers.
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Appendix Detailed balance

The detailed balance condition for the transition between state i and j is

�iP
gen
i!jP

acc
i!j = �jP

gen
j!iP

acc
j!i: (5.53)

Here, �i is the Boltzmann weight of con�guration i, P gen
i!j denotes the transition matrix

which determines the probability to perform a trial move from state i to state j and
P acc
i!j is the probability with which this trial move is accepted.
In the standard Metropolis scheme, the transition matrix is symmetric and the ac-

ceptance criterion only depends on the Boltzmann factors of state i and j. However,
in the present scheme, liquid particles and vapor particles have di�erent maximum dis-
placements, which a�ects the transition matrix for the trial moves and needs to be taken
into account in the acceptance criterion.

We rewrite Eq. (5.53) as

P acc
i!j

P acc
j!i

=
�j
�i

P gen
j!i

P gen
i!j

: (5.54)

The probability to generate a move from i to j is proportional to the inverse cube of the
maximum displacement, denoted by drmax, and depends on the state of the particle, s.
The acceptance criterion now becomes

P acc
i!j

P acc
j!i

=
�j
�i

�
drmaxi(s)

drmaxj(s)

�3

: (5.55)

There are many possible choices for P acc
i!j that satisfy this condition (and the obvious

condition that the probability cannot exceed one). We have adopted the Metropolis rule

P acc
i!j = Min

"
�j
�i

�
drmaxi(s)

drmaxj(s)

�3

; 1

#
: (5.56)

However, there is one other condition that we have not mentioned yet. If a particle
makes a transition from the vapor to the liquid and its displacement is larger than the
maximum displacement in the liquid, then the move should be rejected. The reason is
that when this move would have been accepted (and the particle would become a liquid
particle), the reverse move could never be made (because the maximum displacement
for liquid particles is smaller than the maximum displacement for vapor particles).





6 Rate of homogeneous gas-liquid
nucleation in a Lennard-Jones
system

We report a computer-simulation study of the absolute rate of homogeneous gas-liquid

nucleation in a Lennard-Jones system. The height of the barrier has been computed using

umbrella sampling, whereas the kinetic prefactor is calculated using molecular dynamics

simulations. The simulations show that the nucleation process is highly di�usive. We

�nd that the kinetic prefactor is a factor 10 larger than predicted by classical nucleation

theory. The height of the nucleation barrier is around 10% lower than predicted by

classical nucleation theory.

6.1 Introduction

The formation of liquid droplets from a supersaturated vapor is an activated process.
When a vapor is supersaturated, the liquid phase is more stable than the vapor. However,
due to the free-energy barrier separating the two phases, the vapor will not condense
immediately. First nuclei of the new phase have to form. Two competing contributions
determine the excess free energy of such nuclei. The di�erence in chemical potential
between vapor and liquid drives the nucleation process, whereas the surface free energy
frustrates the formation of nuclei. Initially, the surface free energy dominates, and
hence the excess free energy of a droplet increases with size. However, beyond a certain
\critical" nucleus size, the volume term takes over, and the excess free energy decreases.
It is only from here on that a nucleus grows spontaneously into a bulk liquid.

The classical nucleation theory of homogeneous gas-liquid nucleation was formulated
over half a century ago [4, 5]. This theory is partly phenomenological in nature. Subse-
quently, various modi�cations and extensions have been proposed [54, 96{99, 132, 133],
and much progress has been made in the development of statistical-mechanical theo-
ries of nucleation [11, 14, 115]. In parallel, nucleation rate measurements have become
increasingly precise. This makes it possible to test the theoretical predictions for the
nucleation rate [15, 16, 33, 34, 50, 94, 95, 134{137]. However, in the experiments only
the nucleation rate can be probed. It is virtually impossible to study the critical nuclei
themselves. The reason is precisely that nucleation is an activated process. The rate k
of such a process can be written as:

k = Ce���G
�

= CPo: (6.1)

Here, C is a prefactor, � � 1=kBT is the reciprocal temperature, with kB Boltzmann's
constant and T the absolute temperature, and �G� is the nucleation barrier which is
given by the excess free energy of the critical nucleus. The nucleation rate is the product
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of two factors: (1) the probability Po to �nd the system at the top of the barrier and
(2) the rate C at which this barrier is crossed. In experiments the height of the barrier
is typically in the order of 50 � 100kBT . This implies that the probability to �nd a
nucleus of critical size is extremely small, on the order of 10�12 per cm3. Moreover,
the kinetic prefactor is in the order of Gigahertz to Terahertz. This means that when a
nucleus reaches its critical size, it spends only little time at the top of the barrier. Hence,
nucleation is both infrequent and fast and it is very di�cult to study the structure and
dynamics of the critical nuclei. Experiments only measure the overall nucleation rate. It
is not possible to measure the factors that determine the nucleation rate independently.
It is for these reasons that computer simulation is a natural complementary tool to study
the nucleation process. By employing umbrella sampling [26] we can stabilize the critical
nuclei, which allows us to study the structure of a nucleus and to compute its free energy
as a function of its size. Moreover, using the Bennett-Chandler scheme [28{30] we can
also compute the kinetic prefactor.

Gas-liquid nucleation proceeds via the addition of single particles from the vapor.
This is a sequence of uncorrelated events. As a consequence, the nucleation process is
di�usive, rather than a ballistic. Recently, we have shown how the Bennett-Chandler
scheme can be modi�ed to study di�usive barrier crossings [69]. Here we apply this
extended scheme to study gas-liquid nucleation in a Lennard-Jones system. The choice
of the Lennard-Jones system as a model for a simple 
uid is motivated by several factors:
First of all, the phase behavior and surface tension of this system are known. This
makes it possible to compare the simulation results with classical nucleation theory [5].
Secondly, in a chapter 5, we have computed the nucleation barrier for the Lennard-Jones
system.

The rest of the chapter is organized as follows: In the next section we brie
y discuss
the Bennett-Chandler scheme and the modi�cations described in Ref. [69]. We then
describe some technical aspects of the simulations. We end with a discussion of the
results.

6.2 Crossing Rate

Nucleation is an activated process and the rate limiting step in the condensation of the
vapor. This implies that in order to compute the rate of nucleation, we can calculate
the rate at which the vapor transforms into the liquid and vice versa. We apply the
Bennett-Chandler scheme [28{30] to compute rate constants for a transition between
two states, A (vapor) and B (liquid), that are separated by a free-energy barrier. In
the Bennett-Chandler scheme it is assumed that the reaction can be described by a
�rst-order phenomenological rate law:

�PA(t) = �PA(0)e
�t=� : (6.2)

Here PA is the probability that the system is in state A (vapor). According to the
Onsager-regression hypothesis the relaxation of the macroscopic variable PA is given by
the regression of spontaneous 
uctuations of a microscopic variable, nA, in an equilibrium
system [67]:

�PA(t)=�PA(0) / h�nA(t)�nA(0)ieq: (6.3)
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Here �PA(t) and �nA(t) are the deviations of PA and nA from their equilibrium value
at time t, respectively, and � is the relaxation time.

We now have to determine the characteristic, microscopic functions, nA and nB, the
value of which speci�es whether the system is in state A (vapor) or state B (liquid). To
this end, we �rst have to de�ne a reaction coordinate that connects the vapor with the
liquid phase. For now, let us assume that we have such a coordinate, that we denote
by q1. The transition state separating the liquid from the vapor is denoted by q�1. The
conventional de�nition for the characteristic functions is

nA = �(q�1 � q1);

nB = �(q1 � q�1);
(6.4)

where � is the Heaviside function.
We then arrive at the following microscopic expression for the rate constant kAB [67]:

kAB =
h _q1�(q1 � q�1)�(q1(t)� q�1)ieq

h�(q�1 � q1)ieq
=M(t): (6.5)

The time correlation function M(t) explicitly depends on time, whereas kAB does not.
Hence, the above equation is only valid if and when M(t) reaches a plateau value, after
an initial transitory period.

In transition state theory it is assumed that all trajectories that have crossed the top
of the free-energy barrier, proceed to the �nal state and do not recross the barrier to
the initial state. This implies that all trajectories that initially head from the top of the
barrier to a given state, will end up in that state. The crossing rate that corresponds
to this situation can be obtained by taking the limit t ! 0+ in the expression for the
transition rate in Eq. (6.5):

kTST = lim
t!0+

M(t) =
hj _q�1jieq

2

h�(q1 � q�1)ieq
hnAieq

=
hj _q�1jieq

2
Po(q

�

1): (6.6)

It is seen that kTST is the product of two contributions. The �rst contribution is the
average 
ux of trajectories over the top of the barrier, and the second contribution is
the relative probability for the system to be at the top of the barrier. The probability
density for the system to be at the top of the barrier, divided by the probability that it
is in the vapor state is given by

Po(q
�

1) =
e��F (q

�

1
)R q�

1

0
dq01e

��F (q0
1
)
: (6.7)

Only the trajectories that are in the initial state at time �t and in the �nal state at
time t, contribute to the transition rate. Those trajectories that recross the barrier do
not contribute. It is conventional to express the reduction of kAB due to recrossing in
terms of the transmission coe�cient �, de�ned as

� =
kAB
kTST

: (6.8)
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Ruiz-Montero et al. derived a general expression for the rate constant by studying
the response of the system to an initial perturbation [69]. They found:

M(t) �
hnBieq

h�nA��ieq
h _q1�

0(q1)nA(t)ieq

= kAB:

(6.9)

Here nA and nB are again the characteristic functions and � is the perturbation function
that speci�es the initial perturbation. The Bennett-Chandler expression (Eq. (6.5)) is
recovered by taking for both the perturbation function and the characteristic functions a
step-function. However, we have considerable freedom in our choice for both functions.
This is important, because Eq. (6.5) is less useful for di�usive barrier crossings [69].

One of the main problems is that a �-function perturbation does not prepare the
system in the steady-state initially. When the initial perturbation is a step-function,
we increase the probability of state A and decrease the probability of state B by the
same amount. The steady-state, however, corresponds to a much smoother probability
distribution. Hence, the system �rst has to relax to the steady-state, a process which
in the case of di�usive barrier crossings can be slow. We can eliminate this problem by
initially preparing the system such that it is already close to the steady state. This can
be accomplished by taking the following form for the initial perturbation function [69]

�(q1) = 1 + �(q1A)

"
1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)

#
: (6.10)

Still, we can do better. We are also free to choose other characteristic functions
for nA and nB, as long as they only di�er in the regions of con�guration space that
contribute negligibly to the equilibrium averages. This means that we can choose other
functional forms for nA and nB near the top of the barrier, but not in state A or state
B. We will therefore use functions that behaves like the Heaviside functions in state A
and B, but vary more smoothly near the top of the barrier. The advantage is that a
continuous function that varies smoothly can be expected to yield much better statistics
than a step-function [69]. The characteristic functions are given by

nA(q1) = 1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)

(6.11)

and nB(q1) = 1� nA(q1).
We have computed the transmission coe�cient � in four di�erent ways, that di�er

from each other in the choice for the perturbation function and the form of the char-
acteristic function. In Fig. 6.1 we show the di�erent functions. In the Appendix we
give a derivation of the expressions for the transmission coe�cients that we used in the
simulations. Below we list the results:

1. The conventional way of computing the transmission coe�cient. Both the initial
perturbation and the characteristic function are a Heaviside function:

�(q1) = �(q�1 � q1)=h�(q
�

1 � q1)ieq; (6.12)

nA(q1) = �(q�1 � q1): (6.13)
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dc

a b

Figure 6.1 Sketch of the the perturbation functions and the character-
istic functions. The sub�gures (a) to (d) correspond to the transmission
coe�cients �1 to �4, de�ned in Eqs. (6.14){(6.23), respectively. In the
sub�gures, the top panel shows the perturbation function �(q1) and the
bottom panel shows the characteristic function nB(q1) = 1� nA(q1).

Combining Eq. (6.5) with Eq. (6.8) and using the fact that hA(q1)�(q1 � q�1)ieq =
hAich�(q1 � q�1)ieq, where the subscript c indicates that the average is over states
constrained at the top of the barrier, we obtain the following expression for �:

�1(t) = h _q1�(q1(t)� q�1)ic
2

hj _q�1jieq
: (6.14)

2. The initial perturbation is still a Heaviside function, but the characteristic function
is now a function that behaves like the Heaviside function in state A and state B,
but behaves more smoothly near the top of the barrier:

�(q1) = �(q�1 � q1)=h�(q
�

1 � q1)ieq; (6.15)

nA(q1) = 1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)
: (6.16)

This yields for the transmission coe�cient

�2(t) =

R t
0
dt0h _q1(0) _q1(t

0)e�F (q1(t
0))icR q1B

q1A
dq01e

�F (q0
1
)

2

hj _q�1jieq
: (6.17)
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3. The initial perturbation is the smooth function, but the characteristic function is
still the Heaviside function:

�(q1) = 1 + �(q1A)

"
1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)

#
; (6.18)

nA(q1) = �(q�1 � q1): (6.19)

The starting points for the simulations to compute the transition rate are not
states at the top of the barrier, but near the top of the barrier, obtained from a
biased ensemble with weighting function w. The expression for the transmission
coe�cients is obtained by combining Eq. (6.57) of the appendix with Eq. (6.8):

�3(t) =
h _q1(0)e

�F (q1(0))nB(t)w
�1(q1)iwR q1B

q1A
dq01e

�F (q0
1
)

hwieq
h�(q1 � q�1)ieq

2

hj _q�1jieq
: (6.20)

4. Both the initial perturbation and the characteristic function are smooth near the
top of the barrier:

�(q1) = 1 + �(q1A)

"
1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)

#
; (6.21)

nA(q1) = 1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)
: (6.22)

Again the starting points for the computation of the 
ux are taken from a weighted
ensemble. The expression for the transmission coe�cient is found from Eq. (6.62)
of the appendix and Eq. (6.8):

�4(t) =

R t
0
dt0h _q1(0)e

�F (q1(0)) _q1(t
0)e�F (q1(t

0))w�1(q1)iwhR q1B
q1A

dq01e
�F (q0

1
)
i2 hwieq

h�(q1 � q�1)ieq

2

hj _q�1jieq
:

(6.23)

The nucleation rate is given by kAB = �kTST . In order to compute kTST we have
to know the (relative) probability Po(q

�

1) of �nding the system at the top of the barrier.
In chapter 5 we have used umbrella sampling [26] to calculate the free-energy barrier
and hence, Po(q

�

1) (see Eq. (6.7)). In the present chapter we simply use the result of
chapter 5 for the barrier height and use this as a starting point for the computation of
the transmission coe�cient. We have performed molecular dynamics (MD) simulations
to calculate the transmission coe�cient in the four di�erent ways described above. The
starting con�gurations for these calculations were obtained from an umbrella-sampling
simulation near the top of the barrier. Con�gurations exactly at the top of the barrier,
needed to compute �1 and �2, were also obtained from these simulations. We stress that
our computational scheme obviates the need to perform constrained MD-simulations at
the top of barrier [30].

6.3 Details of the simulations

In order to calculate the nucleation rate we have to de�ne a reaction coordinate that
monitors the progress of the transition. We have considerable freedom in our choice for
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the reaction coordinate. Although both the relative probability for the system to be at
the top of the barrier, and the 
ux over the top of the barrier do depend on the choice
for the reaction coordinate, the rate, which is the product of the two, does not [69].
Nevertheless, in practice it is convenient to use a local order parameter, rather than a
global order parameter, such as the density of the system. The reason is that, under
certain conditions, it can be entropically favorable to distribute a given amount of the
new phase over many small nuclei instead of over a single large cluster (see chapter 4). In
the nucleation process we are only interested in the largest liquid cluster. We therefore
de�ne the number of particles in this cluster as our reaction coordinate. To identify the
particles that constitute the largest cluster, we used a geometric cluster criterion, that
is derived from the one proposed by Stillinger [110]. Particles that have a signi�cantly
higher local density than the particles in the remainder of the system are identi�ed as
\liquidlike" particles. All liquidlike particles that are less than qc = 1:5� apart, are
considered to be connected and, therefore, belong to the same cluster. For more details,
see chapter 5.

All MD-simulations were performed in the isobaric-isothermal (NPT ) ensemble. To
control the pressure and temperature we employed the extended system method proposed
by Andersen [138] and Nos�e [139]. The algorithm to integrate the equations-of-motion
was derived by a Trotter factorization of the Liouville operator [140]. The reversible
integrator is similar to the algorithm recently developed by Martyna et al. [141]. We

used a time-step of 0:01� , where � = �
p
�=m�2t is the unit of time, with m the mass,

� the Lennard-Jones diameter and � the Lennard-Jones well depth. In what follows, we
use reduced units, such that the Lennard-Jones well depth � is the unit of energy and
the Lennard-Jones diameter � is the unit of length.

In order to calculate the transition rate, we performed umbrella simulations near the
top of the barrier to generate a sequence of uncorrelated con�gurations. These con�g-
urations were used as initial states for the computation of the transmission coe�cients
in Eqs. (6.14)-(6.23). For every calculation we used 300 independent con�gurations.
At the beginning of the unconstrained runs, all particles were given a velocity drawn
from a Maxwell-Boltzmann distribution. Furthermore, we made use of the time-reversal
property �(�) = ��(��). This means that every initial con�guration was not only
propagated forwards in time, but also backwards. Hence, the results that we present
here were averaged over 600 trajectories.

We computed the rate of nucleation of the Lennard-Jones system under the condi-
tions studied in chapter 5. The interaction potential was truncated and shifted at a
cuto� radius rc = 2:5�, where � is the Lennard-Jones particle diameter. We made no
long-range correction and applied cubic periodic boundary conditions. The number of
particles was N = 864.

6.4 Results

We have calculated the transition rate for homogeneous gas-liquid nucleation in a Lennard-
Jones system at T = 0:741 and P = 0:012, corresponding to a supersaturation S =
P=Pcoex = 1:53. Under these conditions, the barrier height is ��G� = 59:4 � 0:6. We
computed the transmission coe�cient in four di�erent ways, according to Eqs. (6.14){
(6.23). Figs. 6.2{6.5 show the results. First, we discuss the di�erent ways of computing
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the transmission coe�cients. Next, we make a comparison with classical nucleation
theory.

6.4.1 Transmission coe�cient

Comparison of characteristic functions and perturbation functions

Fig. 6.2 shows the transmission coe�cient, as de�ned in Eq. (6.14). Here we have com-
puted the transmission coe�cient in the conventional way: both the initial perturbation
and the characteristic function are Heaviside functions. As explained, we expect that
this perturbation gives rise to a transitory regime, in which the system relaxes to the
steady-state. Indeed, as can be seen from Fig. 6.2, the transmission coe�cient initially
drops from the value � = 1 at t = 0. This is due to recrossings. Only after a fairly long
transitory period, the transmission coe�cient reaches a plateau value. It also seen that
the initial decay is very rapid and that the plateau value is very small. This indicates
that the nucleation process is highly di�usive. A direct analysis of the trajectories sup-
port this view: the system stays close to the top of the barrier and does not end up in
either minimum (gas or liquid one) during the run.

It is also clear from Fig. 6.2 that the statistical noise is large, even though averages
were taken over 600 trajectories. A smoother characteristic function should increase the
statistical accuracy. This is illustrated in Fig. 6.3. In this case the characteristic function
is not the Heaviside-function, but the function in Eq. (6.16). This function behaves like
the Heaviside function in the vapor and liquid state, but changes more smoothly near
the top of the barrier. We found that this choice of the characteristic function decreases
the error bar by a factor seven.

However, the drawback is that we have not prepared the system close to the steady
state situation. For di�usive barrier crossings, the approach to the stationary state can
be slow. Moreover, it is conceivable that the transmission coe�cient appears to have
reached a plateau value, but that in fact, it has not, due to the slow dynamics at the top
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Figure 6.2 Transmission
coe�cient as a function
of time for homogeneous
gas-liquid nucleation in a
Lennard-Jones system at a
supersaturation S = 1:53
(T = 0:741, P = 0:012).
The transmission coe�cient
is computed via Eq. (6.14).
The plateau value is � =
0:03 � 0:03. Here, and in
subsequent �gures, the re-
ported estimate is based on
the plateau value of � at
20 < t < 40.
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Figure 6.3 Transmission
coe�cient as a function
of time for homogeneous
gas-liquid nucleation in a
Lennard-Jones system at a
supersaturation S = 1:53
(T = 0:741, P = 0:012).
The transmission coe�cient
is computed via Eq. (6.17)
and is found to be � =
0:004� 0:004.

of the barrier. It is therefore advisable to prepare the system close to the steady state.
To this end, we choose as the initial perturbation not a step-function, but the function
given in Eq. (6.18). The result is shown in Fig. 6.4. We see that the transient regime is
suppressed and that the transmission coe�cient reaches its plateau value immediately.
This shows that indeed the system is already close to the steady-state situation initially.

In Fig. 6.5 we show the transmission coe�cient computed via Eq. (6.23). Now both
the initial perturbation and the characteristic function are Heaviside-like functions that,
however, vary continuously near the top of the barrier. We see that in comparison with
Fig. 6.4 the error bar is slightly reduced and we use the value for �4 to estimate the
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Figure 6.4 Transmission
coe�cient as a function
of time for homogeneous
gas-liquid nucleation in a
Lennard-Jones system at a
supersaturation S = 1:53
(T = 0:741, P = 0:012).
The transmission coe�cient
is computed via Eq. (6.20).
We �nd � = 0:004� 0:01.
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Figure 6.5 Transmission
coe�cient as a function
of time for homogeneous
gas-liquid nucleation in a
Lennard-Jones system at a
supersaturation S = 1:53
(T = 0:741, P = 0:012).
The transmission coe�cient
is computed via Eq. (6.23)
and is found to be � =
0:011� 0:009.

nucleation rate. We �nd �4 = 0:011��1 � 0:009��1. This estimate is based on the
plateau value of �4 at 20 < t < 40. However, �4 appears to approach a constant value
much sooner. This allows us to discard the long-time data that contribute little to the
signal, but much to the noise. If we compute the plateau value of �4 for 2:5 < t < 10,
we �nd �4 = 0:002 � 0:004. At �rst sight this is a disappointing result: the error in
the transmission coe�cient is nearly 100%. However, we know that � must be positive.
Moreover, we stress that an error of one kBT in the calculation of the barrier height
leads to a larger error in the estimate of the nucleation rate. Still, in order to obtain
a better estimate for the transmission coe�cient, we performed additional simulations
to determine �4. To this end we extracted 200 extra con�gurations from the umbrella-
sampling simulation near the top of the barrier. Furthermore, we used every starting
con�guration not once (or actually twice as every con�guration is propagated backwards
and forwards in time), but ten times (or twenty times), by assigning di�erent initial
velocities to the same con�guration. We thus averaged over 10000 trajectories. The
result is �4 = 0:003� 0:002, which is close to the previous result. Although the error in
the transmission coe�cient is still nearly 100%, it is much smaller than can be obtained
with any other technique and, to our knowledge, much smaller than the error in any
other computed transmission coe�cient reported in the literature. Another test to verify
if the result that we obtain is of the same order of magnitude, is to �t the short-time
behavior of the correlation function in Eq. (6.23) to an exponential. Although the �t
to an exponential is less than perfect (the actual correlation function decays faster), its
integral is again of the same order of magnitude (�4 = 0:013� 0:002).

To obtain the full nucleation rate, we can combine the value of the transmission
coe�cient with the prediction of transition-state theory (TST) for the crossing rate
(see Eq. (6.8)). The TST-prediction is the product of the average probability for the
system to be at top of the barrier and the rate at which this barrier is crossed. From
the measured nucleation barrier (see chapter 5) we �nd that the relative probability
for the system to be at the top of the barrier is Po = 1:63 � 10�26. The average
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Compound kAB T P
(cm�3s�1) (K) (kPa)

Ar 4.05e+05 88.88 503
Kr 2.68e+05 127 607
N2 3.09e+05 70.5 311
CH4 4.50e+05 110 442
CF4 8.49e+04 113 243
CCl4 3.84e+04 242 266
SF6 4.00e+04 149 199

Table 6.1 Nucleation rates kAB
for a number of apolar com-
pounds, as deduced from the sim-
ulations. The values for � and
� are taken from Ref. [142]. In
order to facilitate a comparison
with experiments we also give the
temperatures T (in Kelvin) and
pressures P (in kPa).

of the absolute value of the velocity of the order parameter at the top of the barrier
is hj _q1ji = 76:2��1. Hence, the rate in the transition-state theory approximation is
kTST = 6:22 � 10�25��1. From kTST and the transmission coe�cient we get the full
nucleation rate kAB = kTST� = 1:8� 10�27��1.

The rates found from our simulations are measured in number of nuclei per unit
time. Experimental nucleation rates are often expressed as the number of nuclei formed
per unit volume per unit time. To obtain such a quantity we note that

k = �kTST = Cs
h�(q � q�1)ieq
hnAieq

;

= Cs
N(n�)Pn=n�

n=0 N(n)
;

= Cs
e���G(n

�)Pn=n�

n=0 e���G(n)
:

(6.24)

Here N is the total number of particles, N(n) is the number of nuclei of size n and
we have used that ��G(n) � � ln[N(n)=N ]. Note that the kinetic prefactor is given

by Cs = �hj _q1jieq=2. If we now multiply the above expression with �v
Pn=n�

n=0 e���G(n),
where �v is the density in the vapor, we �nd

k = Cs�ve
���G(n�): (6.25)

This expression for the nucleation rate yields the number of liquid particles produced
per unit volume per unit time. It can be interpreted as the number density of nuclei
at the top of the barrier, multiplied with the net rate Cs at which these nuclei gain
particles. We �nd from the simulations that Cs = 0:11 � 0:08, �v = 0:0188 � 0:0005
and ��G(n�) = 59:4 � 0:6. Hence, we �nally obtain for the rate of nucleation k =
3:5� 10�29��3��1.

To our knowledge, there is a scarcity of quantitative data on nucleation in spherical,
non-polar 
uids, such as argon. However, in order to facilitate a future comparison of
our data with experimental data, we have converted the rate constant to experimental
units, i.e. units of number of nuclei formed per cm3 per s. We have done this for a
variety of compounds that obey the principle of corresponding states. Table 6.1 shows
the results. It is interesting to note that in recent experiments by Strey et al. on a
variety of compounds [15]-[136], the measured nucleation rates were of the same order
of magnitude. This illustrates that it is indeed possible to use simulation to predict
nucleation rates under conditions that are typical of real experiments.
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6.4.2 Comparison with classical nucleation theory

In classical nucleation theory (CNT), the rate of nucleation is given by [7]

kCNT = Zfe(n
�)�(1)e���G(n

�): (6.26)

It is seen that the rate is the product of three factors:

1. �(1)e���G(n
�), where �(1) is the number density of monomers in the supersaturated

vapor and �G(n�) is the height of the nucleation barrier. �(1)e���G(n
�) is the

concentration of nuclei that have reached the critical size. In classical nucleation
theory the height of the nucleation barrier is given by

�G� =
16�
3

3�2l��
2
; (6.27)

where 
 is the surface tension of a planar interface, �l is the density of a bulk
liquid (which is assumed to be incompressible) and �� is the di�erence in chemical
potential between the bulk vapor and the bulk liquid, both at the supersaturation
pressure P in the vapor phase

�� = �v(P )� �l(P ): (6.28)

The CNT prediction for the size of the critical nucleus is

n� =
32�
3

3�2l��
3
: (6.29)

In chapter 5 we compared the measured barrier height and critical nucleus size
with the corresponding predictions of classical nucleation theory for various values
of the supersaturation. We found that the classical nucleation theory predicts the
size of the critical nuclei surprisingly well (n�CNT = 338 compared to n�sim = 336),
and that the di�erence between the actual barrier height and the CNT prediction
is independent of supersaturation. For T = 0:741 the barrier height found in the
simulations di�ers by a constant o�set of 5kBT from the value predicted by CNT.

2. fe(n
�). fe(n) is, at coexistence, the forward rate at which a cluster of size n grows

by one monomer; fe(n
�) is the rate at which critical nuclei cross the barrier. The

rate at which particles impinge on the surface of a nucleus of size n is given by

fe(n) = A(n)qn1;ehjvji=4 (6.30)

Here A(n) is the surface area of the nucleus, q is the condensation coe�cient,
which is the fraction of monomers hitting the surface that actually stick, n1;e is
the monomer density at coexistence and hjvji is the mean molecular speed. If we
assume that the gas is ideal, then the monomer concentration at the saturation
(coexistence) pressure Pe is reduced from its value �(1) at the supersaturation
pressure P by a factor S = P=Pe, i.e. n1;e = �(1)=S. For an ideal gas, the mean
velocity is

hjvji =

r
8kBT

�m1
; (6.31)
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where m1 is the mass of monomers. Furthermore, in classical nucleation theory it
is assumed that the nuclei are spherical, yielding for the surface area:

A(n) =

�
36�

�2l

�1=3

n2=3: (6.32)

Combining the above equations yields for the forward rate fe(n
�)

fe(n
�) = A(n�)q(�(1)=S)

p
kBT=2�m1: (6.33)

3. Z, the Zeldovich factor, which relates the number of critical nuclei in the equilib-
rium distribution to the number of critical nuclei in the steady-state distribution.
It is given by

Z =
p
Q=2�kBT ; (6.34)

where

Q � �

�
@2�G

@n2

�
n�

(6.35)

is the second derivative of the free-energy with respect to cluster size n at the top
of the barrier. Using the expression of classical nucleation theory for �G we get

Z =

r
��

6�kBTn�
(6.36)

The Zeldovich factor takes into account that not all nuclei that have reached the
top actually cross it and end up in the liquid state. We �nd that Z = 0:0066.
The low value of the Zeldovich factor re
ects the fact that the barrier crossing is
a di�usive rather than a ballistic process. It is this di�usive behavior which leads
to recrossing and to a reduction of the transmission coe�cient �(t).

Using the above expressions for fe and Z we obtain for kCNT

kCNT =

r
2


�m1

q�(1)

S�l
�(1)e���G(n

�) � CCNT�(1)e
���G(n�); (6.37)

where CCNT is the kinetic prefactor. The number density of monomers can be well
approximated by the total number density �v. Hence, in order to compare the kinetic
prefactor of classical nucleation theory with the kinetic prefactor as obtained from the
simulations, we should compare CCNT and Cs, as de�ned in Eq. (6.24). The surface
tension for the planar interface is 
 = 0:494 and the density of the bulk liquid is �l =
0:766. The density in the vapor is �v = 0:0188 and the supersaturation S = 1:53.
Furthermore, we assume that the sticking coe�cient is one. Hence, the prediction of
CNT for the kinetic prefactor is CCNT = 0:009. The simulations yielded Csim = 0:11�
0:08. Considering the magnitude of the error in the simulation result, we can only
make an order of magnitude comparison with the prediction of CNT. We �nd that
the measured kinetic prefactor is about a factor 10 larger than predicted by CNT. An
explanation could be that the actual area of the droplet is larger than the area of a
sphere with the same number of particles as in the droplet. CNT also assumes that the
critical nucleus grows by uncorrelated collisions of \freely" moving gas particles with the
cluster. It is likely that the overall impingement rate of gas monomers is larger because
of the attraction of the vapor particles by the cluster.
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Appendix Transmission rates for di�usive barrier crossings

To compute the transition rate, we study the response of the system to an, as yet
unspeci�ed, perturbation. We �rst de�ne the response function �(t):

�(t) �
�PA(t)

�PA(0)
; (6.38)

where �PA(t) is the deviation of PA(t) = hnA(t)i, which is the probability of �nding the
system in state A at time t, from its equilibrium value,

�PA(t) = PA(t)� PA;eq = h�nA(t)i; (6.39)

with

�nA = nA � hnAieq: (6.40)

We now impose a perturbation, denoted by the perturbation function �(q1), such
that the initial distribution function �(q(0);p(0)) (with q(0) and p(0) the phase space
coordinates at t = 0) is of the form

�(q(0); p(0)) = �eq�(q1): (6.41)

The response of the system is then given by [69]

�(t) =
h�nA(0)��(t)ieq
h�nA��ieq

: (6.42)

Its time-derivative is

d�

dt
= �

h _q1�
0(q1)nA(t)ieq

h�nA��ieq
: (6.43)

If we assume that the relaxation is exponential, i.e.,

�(t) = e�t=� ; (6.44)

we �nd

1

�
e�t=� =

h _q1�
0(q1)nA(t)ieq

h�nA��ieq
: (6.45)

If we are in a time-regime t << � , we have

��1 =
h _q1�

0(q1)nA(t)ieq
h�nA��ieq

=
kAB
hnBieq

; (6.46)

where kAB is the rate constant. This leads to the following microscopic expression for
kAB:

M(t) �
hnBieq

h�nA��ieq
h _q1�

0(q1)nA(t)ieq

= kAB:

(6.47)

The time correlation function M(t) explicitly depends on time, whereas kAB does not.
Hence, the above equation is only valid if and when M(t) reaches a plateau value, after
an initial transitory period.
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We can now make several choices for both the initial perturbation and the charac-
teristic function. First, we take for the characteristic function nA(q1) = �(q�1 � q1) and
for the perturbation �(q1)

�(q1) = �nA(q1); (6.48)

where � = 1=hnAieq, which follows from the normalization condition. From this we
obtain

kAB =
h _q1n

0

BnB(t)i

hnAieq
�M(t): (6.49)

As the characteristic function is a Heaviside function, we arrive at the following expres-
sion for the rate:

kAB =
h _q1�(q1 � q�1)�(q1(t)� q�1)ieq

hnAieq
�M(t): (6.50)

We will now impose a di�erent initial perturbation. Following Ref. [69], we write the
initial perturbation as

�(q1) = �eq[1 + �(q1)]; (6.51)

which means that � = 1 + �(q1). When the system is in the steady state, �(q1) is given
by [69]

�(q1) = �(q1A)

"
1�

R q1
q1A

dq01e
�F (q0

1
)R q1B

q1A
dq01e

�F (q0
1
)

#
: (6.52)

Here q1A and q1B are the values of the reaction coordinate in the states A and B,
respectively. If we impose this perturbation, we will increase the rate at which the
system reaches the steady-state.

From Eq. (6.47) it follows that the rate is given by

kAB =
1

�(q1A)hnAieq
h _q1(0)�

0(q1(0))nA(t)ieq; (6.53)

where we have used that nA(q1) � �(q1)=�(q1A), and h�nA�nAieq = hnAieqhnBieq. We
can obtain the derivative of �(q1) from Eq. (6.52). Furthermore, noticing that nB(t) =
1� nA(t) and that h _q1(0)�

0(q1(0))i = 0, we �nd for the rate:

kAB =
h _q1(0)e

�F (q1(0))nB(t)ieqR q1B
q1A

dq01e
�F (q0

1
)hnAieq

: (6.54)

As pointed out in Ref. [69], this average can be understood as a biased average, in which
the constraining term is not a delta-function, but a function that has the width of the
barrier. If we take the starting points from the ensemble with a biasing function e�F (q1),
then all points will be distributed almost uniformly over the entire range of q1, as the
biasing function will exactly compensate the e�ect of the free-energy barrier. We do
not always know the precise shape of the barrier. However, this is not really important,
because the main contribution to the average comes from simulations starting in the
barrier region. We therefore impose a biasing potential that ensures that the initial
points are near the top of the barrier. In Ref. [69] the optimal choice for the biasing
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potential is discussed in some detail. We have taken our biasing potential to be a
harmonic function

W (q1) =
1

2
k(q1 � q�1)

2: (6.55)

We now have to correct for the biasing. We note that, in general, the average of a
quantity A in the original, equilibrium ensemble, is related to the average hAiw in the
weighted ensemble, via

hAieq =
hAw�1iw
hw�1iw

= hAw�1iwhwieq; (6.56)

where w is the weighting function, which, in this case is w(q1) = e��W (q1). Hence, the
average in Eq. (6.54), becomes

kAB =
h _q1(0)e

�F (q1(0))nB(t)w
�1(q1)iwR q1B

q1A
dq01e

�F (q0
1
)hnAieq

hwieq: (6.57)

We note that, when we know the shape of the barrier, the average of w in the equilibrium
ensemble can easily be obtained via

hwieq =

R q1B
q1A

dq01w(q1)e
��F (q0

1
)R q1B

q1A
dq01e

��F (q0
1
)

: (6.58)

The advantage of the above biasing potential is that we shorten the transitory pe-
riod. However, we can also improve the statistics in the steady-state regime. This can
be accomplished by using a di�erent form for the characteristic functions nA and nB.
Instead of using Heaviside-functions, we take

nA(q1) =
�(q1)

�(q1A)
: (6.59)

Again, nB(q1) = 1� nA(q1), which gives

nB(q1) =

R dq1
dq1A

dq01e
�F (q1)R q1B

q1A
dq01e

�F (q1)
: (6.60)

As discussed in Ref. [69], nA and nB behave in much the same way as before, except
for the barrier region, where it varies rapidly. That is, in region A nA � 1, whereas in
region B nA � 0. However, we now measure a continuous function that varies smoothly,
instead of counting \ones and zeros". This yields better statistics.

We can substitute the expression for nB in Eq. (6.60) into Eq. (6.57). However,
as the average of h _q1(0)e

�F (q1(0))nB(0)w
�1(q1)iw vanishes, we only have to consider the

change in nB during time t:

nB(t)� nB(0) =

Z t

0

dt0 _q1(t
0)
@nB(q1(t

0))

@q1
=

R t
0
dt0 _q1(t

0)e�F (q1(t
0))R q1B

q1A
dq01e

�F (q1)
: (6.61)

We then �nally arrive at the following expression for the rate

kAB =

R t
0
dt0h _q1(0)e

�F (q1(0)) _q1(t
0)e�F (q1(t

0))w�1(q1)iwhR q1B
q1A

dq01e
�F (q0

1
)
i2
hnAieq

hwieq: (6.62)



7 Gas-Liquid nucleation in
partially miscible binary
mixtures

We report a numerical study of homogeneous gas-liquid nucleation in a binary mixture.
We study the size and the composition of the critical nucleus as a function of the com-
position and supersaturation of the vapor. As we make the (Lennard-Jones) mixture
increasingly non-ideal, we �nd that there is a regime where the critical nucleus is still
miscible in all proportions, even though the bulk liquid phase is not. When these critical
nuclei grow, their composition "bifurcates" to approach the value of one of the two bulk
phases. For more strongly non-ideal mixtures, the two species in the critical nucleus are
no longer completely miscible: we observe droplets that are either rich in one species, or
in the other. However, we do not �nd evidence for phase separation inside the critical
nucleus - a scenario suggested by Talanquer and Oxtoby (J. Chem. Phys. 104, 1993
(1996)). In fact, our simulations show that such demixed clusters have a higher free
energy than critical nuclei that have an asymmetric composition.

7.1 Introduction

Measurements of the rate of homogeneous gas-liquid nucleation provide increasingly
precise and detailed information about the microscopic aspects of the nucleation pro-
cess [15, 16, 50, 51, 94, 95, 136, 137]. From the measured nucleation rates, one can
deduce the size and composition of the critical nuclei[56]. Such information makes it
possible to test nucleation theories in much more detail than was hitherto possible. The
experiments indicate that classical nucleation theory (CNT) works fairly well for one
component systems of simple, non-polar molecules [50, 51]. In particular, CNT predicts
the size of critical nuclei surprisingly well. However, for binary systems the agreement
between the experimental observations and the predictions of CNT is worse [94, 95].
For non-ideal mixtures, CNT can even produce thermodynamic inconsistencies. Under
certain conditions, CNT predicts that, at constant height of the nucleation barrier, the
gas-phase activity of one component as a function of the activity of the other can have
a positive slope. From the nucleation theorem [56] it would then follow that one of the
two components has a negative concentration in the critical nucleus. Laaksonen and
Oxtoby, who used density-functional theory to study nucleation in a mixture [143, 144],
argue that the failure of CNT can be traced back to the fact that this theory does not
predict the composition of the critical nucleus correctly.

Talanquer and Oxtoby [39] reported a more extensive study of the e�ect of compo-
sition and relative strength of the interactions on the nucleation behavior of a mixture.
They studied gas-liquid nucleation in a binary mixture of Lennard-Jones particles and
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found that, as expected, nearly ideal mixtures with positive (negative) deviations from
ideal behavior require higher (lower) gas-phase activities for nucleation. However, for
less ideal mixtures, they observed unexpected behavior. They found that in some cases,
more than one type of critical nucleus could occur. In particular, they observed that
nucleation of a mixture rich in the less volatile component can proceed via a nucleus that
is poor in this component. More surprisingly, their theoretical analysis indicated that,
under certain conditions, phase separation can take place inside the critical nucleus.

In this chapter we report a computer-simulation study of the same model system
that was studied by Talanquer and Oxtoby [39]. We have developed a computational
method, that allows us to e�ciently compare critical clusters that correspond to the
same height of the nucleation barrier. As the rate of nucleation is dominated by the
height of this free-energy barrier, simulations at constant barrier height are comparable
to experiments, in which the size and composition of critical nuclei are often studied at
a �xed nucleation rate.

7.2 Contour of constant barrier height

At a given pressure, temperature and composition of the vapor, the excess free energy of
a nucleus depends both on its size and on its composition. In the previous chapters, we
have seen how, using the umbrella-sampling technique, we can stabilize not only critical,
but also precritical (and postcritical) nuclei. In this way we can obtain information
about the structure and free energy of these nuclei. In the present study we focus our
attention mainly on the critical clusters, i.e. nuclei at the top of the free-energy barrier.
At constant temperature, the height of the free-energy barrier depends both on the
composition and the pressure of the vapor phase. However, as the nucleation rate is a
very steep function of the barrier height, most experimental studies focus e�ectively on
a narrow \window" of barrier heights. For this reason, we also look in our numerical
simulation at the composition dependence of critical nuclei at constant barrier height.
To achieve this, we adjust the pressure for every composition such that the barrier height
is kept �xed at a given reference value. In principle, we could compute the full free-
energy barrier to nucleation by the umbrella sampling technique, for a series of pressures
in order to �nd the desired pressure for a given composition. However, even for only
one composition and one pressure, computing the full free-energy curve is already quite
time consuming. We therefore follow a di�erent approach, which is close in spirit to the
Gibbs-Duhem integration method to trace phase-coexistence curves [145].

We �rst compute the nucleation barrier for one pure component at a given pressure,
using umbrella sampling. We then increase the activity fraction of the other component.
In order to keep the height of the nucleation barrier constant, we have to adjust the
pressure. Information about the required change in pressure can be obtained by simu-
lating the system not only at the top of the barrier, but also in the metastable vapor
phase. For both states we can determine how the free energy varies with the activity
fraction and pressure. By setting the variation in free energy for both states equal, thus
keeping the height of the barrier constant, we get a Clapeyron type of equation which
yields a relation between the change in pressure with the change in activity fraction.
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Let us make this approach more explicit. It will be convenient to work in the (iso-
baric) semi-grand ensemble. The Landau isobaric semi-grand free energy Y is the Le-
gendre transform of the Landau Gibbs free energy G, which, for a binary system, is a
function of the total number of particles N , the number of particles of species 2, N2, the
pressure P , the temperature T , and the order parameter n. The �rst di�erential of the
Gibbs free energy is

dG(N;N2; P; T; n) =�1(n)dN + (�2(n)� �1(n))dN2 + V (n)dP +

� S(n)dT +
@G

@n

����
N;N2;P;T

dn;
(7.1)

where �i is the chemical potential of species i, V is the volume and S is the entropy
of the system. Now the semi-grand ensemble is obtained by a Legendre transformation
between the variables N2 and (�2 � �1):

Y (N;�2 � �1; P; T; n) = G(N;N2; P; T; n) �N2(n)(�2 � �1); (7.2)

or, in di�erential form

dY (N;�2 � �1; P; T; n) =�1(n)dN �N2(n)d(�2 � �1) +

V (n)dP � S(n)dT +

�
@Y

@n

�
N;P;T;�2��1

dn:
(7.3)

At constant temperature and number of particles Eq. (7.3) reduces to

dY (N;P; T; �2 � �1; n) = V (n)dP �N2(n)d��+

�
@Y

@n

�
N;P;T;��

dn; (7.4)

where �� = �2 � �1. In order to keep the height of the barrier constant, the variation
in the free energy at the top of the barrier, whose position is denoted by n�, should be
equal to the variation in the free energy in the metastable vapor phase, with n = 0. In
general, when the activity fraction and the pressure are changed, the top of the barrier
can change. However, at the top of the barrier the partial derivative of the free energy

with respect to cluster size, @Y (n)
@n

, is zero, so that the last term in Eq. (7.3) and Eq. (7.4)
drops out. In the metastable vapor n is zero and remains zero. Hence, the last term is
zero, also for the vapor phase. Eq. (7.4) then reduces to

dY (n�) = dY (0);

V (n�)dP �N2(n
�)d�� = V (0)dP �N2(0)d��;

(7.5)

from which we obtain�
dP

d��

�
�

=
N2(n

�)�N2(0)

V (n�)� V (0)
; (7.6)

where the asterisk denotes di�erentiation at constant barrier height. The chemical po-
tential di�erence �� can be written in terms of the activities of species 1 and 2,

�� = kBT log

�
a2
a1

�
; (7.7)
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where ai = exp[��i] denotes the activity of species i. We can rewrite the above expression
as

�� = kBT log

�
xa2

1� xa2

�
; (7.8)

where xa2 is the activity fraction of species 2, de�ned as

xa2 �
a2

a1 + a2
: (7.9)

We thus obtain the following expression for the variation of the pressure with activity
fraction �

dP

dxa2

�
�

=
kBT

xa2(1� xa2)

N2(n
�)�N2(0)

V (n�)� V (0)
: (7.10)

To compute a contour of constant barrier height on the free-energy barrier surface, we
have to integrate the above expression in the P; xa2 plane by computing N2 and V , both
at the top of the barrier and in the metastable vapor. We have integrated Eq. (7.10) by
a fourth-order predictor-corrector scheme. We start with xa2 = 0, which corresponds to
the limit that only one species is present. At xa2 = 0 the value of (dP=dxa2) is unde�ned
(see Eq. (7.10)) because both the numerator (N2(n

�) � N2(0)) and the denominator
(xa2(1 � xa2)) vanish for xa2 = 0. However, (dP=dxa2) itself is �nite. To bootstrap the
integration procedure we have adopted the scheme of Bolhuis and Frenkel [146]. Instead
of calculating successive points step by step, we \guess" the �rst points on the P; xa2
contour. For every point we perform a simulation (or actually two, one in the vapor
and one at the top of the barrier) to compute the derivative of P with respect to xa2
according to Eq. (7.10). Subsequently we �t the derivatives to a polynomial in xa2. The
polynomial is integrated to give new pressures which are then used in the next iteration.
We repeat this procedure until convergence of the pressure is reached. After we have
generated the �rst few points on the contour in this way, we use these points to start
the fourth-order predictor-corrector scheme to obtain the rest of the contour.

To compute the derivative in Eq. (7.10) we need to know the position of the top of
the barrier with a high accuracy, as N2(n) and V (n) strongly depend on n. For every
pressure and activity we therefore perform not one, but three simulations near the top of
the barrier: one at the estimated top, and one on either side. The histogram of cluster
sizes near the top of the barrier is �tted to a polynomial to obtain the variation of the
free energy with cluster size (via Eq. (5.7)). This allows us to locate the position of
the top of the barrier. Next, to get the volume, V (n�), and the number of particles of
species 2, N2(n

�), at the top of the barrier, we �t the histograms of V (n) and N2(n)
to polynomials and insert the value of the critical droplet size into these polynomial
expressions.

7.3 The system

We studied a simple model for a binary mixture, namely one in which the particles
interact via the Lennard-Jones pair potential

vij(r) = 4�ij

���ij
r

�12
�
��ij
r

�6�
; (7.11)



The system 127

where r is the interparticle distance, �ij is the Lennard-Jones well depth corresponding
to the interaction between species i and j and �ij is the corresponding Lennard-Jones
diameter. Following Talanquer and Oxtoby [39] we take �11 = �22 = �12 = �.

The structure and composition of our nuclei is then determined by the values of the
\volatility parameter"

��22 =
�22
�11

(7.12)

and the \mixing parameter"

�� =
�

�11
=

�11 + �22 � 2�12
�11

: (7.13)

The volatility parameter ��22 measures the relative volatility of the two components, and
the mixing parameter �� determines the energy of mixing particles of di�erent species.
Note that �� does not measure the deviation from the Lorentz-Berthelot mixing rule
(�12 =

p
�11�22). In fact, when �12 =

p
�11�22, �

� > 0 , unless �11 = �22.
In most nucleation experiments [50, 95, 136] the volume is �xed. This means that

the nucleation of a liquid droplet leads to a decrease in vapor pressure, and in general,
also to a change in the composition of the vapor phase. However, as already indicated,
the concentration of critical nuclei is usually so small, that the change in pressure and
composition is negligible. That is, when a critical nucleus is formed, the activities of the
species in the vapor phase are unaltered. In principle, we could simulate the experimental
situation by performing a NV T -simulation. However, a large excess number of particles
would then be required in order to keep the vapor phase activities constant. It is
therefore much more natural to work in the isobaric-semi-grand (NPT��)-ensemble
or in the grand-canonical (�V T )-ensemble. In both ensembles a liquid droplet can be
formed at constant chemical potentials of the vapor species without actually having to
simulate an excessive number of vapor particles. In the grand-canonical ensemble this
is accomplished by the insertion and removal of particles. However, at high densities
the insertion probability can be too low to obtain reasonable statistics. It is then more
convenient to work in the isobaric-semi-grand ensemble. In this ensemble, the volume
of the system is adjusted such that the pressure in the vapor surrounding the liquid
drop is maintained at a constant value, irrespective of the size of the liquid cluster (see
chapter 5). In addition, in a semi-grand Monte Carlo simulation, the composition in
the vapor is kept constant, by allowing for Monte Carlo moves that swap the identity of
particles (see e.g. Ref. [147]). Hence, this approach e�ectively mimics the experimental
situation in which the gas phase activities are constant, but it avoids the insertion and
removal of particles, that is required in the grand-canonical ensemble. More details
about the Monte Carlo scheme that is used to study (pre) critical nuclei, can be found
in chapter 5.

The number of particles in all simulations was N = 864. As the size of the largest
critical cluster in our simulations was less than 600 particles and the density of the
surrounding vapor is very low, the system size was always su�ciently large that system-
size artifacts can be excluded. We have truncated the potential at rc = 2:5� and shifted
the potential such that it is zero at the cuto�. No long-range corrections were made.
We applied cubic periodic boundary conditions. In what follows, we use reduced units,
such that �11 is the unit of energy and � is the unit of length.
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7.4 Results and discussion

In order to facilitate comparison of our �ndings with recent experiments [50, 94, 95, 136]
and theories[39] on nucleation in binary systems, we will use, as much as possible, the
same notation as employed in these publications. In these studies the \onset activities"
ai0 = exp[��i0] are de�ned as those activities for which the nucleation rate (in exper-
iments) or the height of the barrier (in theory) is kept at a �xed reference value. As
we do not determine the nucleation rate itself, but the height of the nucleation barrier,
we follow Talanquer and Oxtoby [39] and de�ne the onset activities as those activities
for which the height of the barrier is constant. This seems reasonable, as the rate of
nucleation depends strongly on the barrier height, and only weakly on the kinetic pref-
actor. We can therefore expect that the onset activities follow the same behavior as the
experimentally determined onset activities, that correspond to a �xed nucleation rate.

The composition of the clusters is usually expressed in terms of the normalized ac-
tivity fraction of one of the components. The normalized activity fraction of component
2 is de�ned as

xa2n �
a2n

a1n + a2n
; (7.14)

where the normalized onset vapor activities a1n are given by

ain � ai0=a
0
i0 (7.15)

and a0i0 represents the onset activity for the pure vapor of component i.
We performed two sets of simulations. The �rst set corresponds to asymmetric

mixtures, for which ��22 = 1:1: The second corresponds to symmetric mixtures with
��22 = 1:0. The starting point for all simulations was the one-component system with
xa2 = 0:0, i.e. a system consisting of pure species 1. In chapter 5 we computed the
height of the nucleation barrier in this system for T = 0:741 (which is 32% below
the critical temperature Tc = 1:085 [123]) and P = 0:01202, which corresponds to a
supersaturation S = 1:53. At this degree of undercooling, the height of the nucleation
barrier is 56:7kBT . In the present simulations, we keep the temperature constant, but
vary the activity fraction and pressure according to Eq. (7.10). In this way, we ensure
that the height of the barrier remains constant. Hence, all results that we present below
refer to a reference barrier height �Y �0 = 56:7kBT .

7.4.1 Asymmetric mixtures

We �rst discuss the behavior of the asymmetric mixtures, as they provide a good test
for the integration scheme discussed in section 7.2. The volatility parameter is ��22 = 1:1.
The fact that ��22 > 1 means that component 1 is the more volatile component. We
studied asymmetric mixtures with this value of the volatility parameter for three di�erent
values of the mixing parameter ��: �� = 0:1; 0:3 and 0:5. As the volatility parameter
is held constant, the two one-component limits, with xa2n = 0:0 and xa2n = 1:0, are
the same for all three values of ��. This can be used as a test for the accuracy of the
integration scheme discussed in section 7.2: although we do not know beforehand what
value of the pressure is required to get the reference barrier height Y0 = 56:7kBT in the
limit xa2n = 1:0, we do know that this pressure cannot depend on ��. Fig. 7.1 shows
the pressure as a function of the activity fraction for the three di�erent mixtures. It is



Results and discussion 129

0.0 0.2 0.4 0.6 0.8 1.0
xa2n

0.005

0.010

0.015

0.020

P

Λ∗
=0.1

Λ∗
=0.3

Λ∗
=0.5

Figure 7.1 The reduced pressure P as a function of the normalized
activity fraction xa2n for an asymmetric mixture with ��22 = 1:1 for three
di�erent values of the mixing parameter ��. All curves correspond to a
reference work of formation of �Y �0 = 56:7kBT . In this �gure and all
subsequent �gures, we use �11 = �22 = �12 as our unit of length and �11
as our unit of energy. In all cases, kBT=�11 = 0:741.

seen that at intermediate values of the activity fraction, the pressures are di�erent for
the di�erent types of mixtures. However, in the one-component limits the pressures are
the same (P (xa2n = 1:0) = 0:00730� 0:00007). This means that the integration scheme
is not only an e�cient, but also an accurate method to compute contours of constant
free energy on the free-energy barrier surface.

Fig. 7.1 shows that, as the activity fraction is increased from zero, the pressure
initially increases. In other words, mixing inhibits the nucleation process and the higher
the value of the mixing parameter, the larger the increase in pressure. At some point
however, the pressures goes down again as the nuclei become enriched in the less volatile
component. This is illustrated in Fig. 7.2, where we show the excess number of particles
of species 1 and 2 as a function of the activity fraction for �� = 0:3. The excess number
of particles of species i is de�ned as

�ni = 4�

Z
1

0

(�i(r)� �v;i)r
2dr; (7.16)

where �(r)i is the density of species i in a spherical shell of radius r around the center-of-
mass of the cluster and �v;i is the density of species i in the vapor. The excess number of
particles in a critical nucleus is a quantity that can be deduced from experiments using
the nucleation theorem [56].
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Figure 7.2 Size and composition of the critical nuclei as a function of
the normalized activity fraction xa2n in a binary system with �� = 1:1 and
�� = 0:3, corresponding to a nucleation barrier of height �Y �0 = 56:7kBT .
�n1 and �n2 are the excess numbers of particles of species one and two,
respectively.

In the limit xa2n = 0:0, the critical nucleus contains some 325 particles. When the
activity fraction is increased, the concentration of species 2 increases. But as mixing
of the two species is unfavorable, the relative concentration of species 2 in the cluster
is initially less than in the vapor phase. Moreover, the total number of particles in
the critical nucleus increases with xa2n. However, at an activity fraction of xa2n = 0:4,
component 2 begins to dominate the nucleation process and the fraction of this species
in the critical nucleus rapidly increases. At the same time, the total number of particles
in the cluster starts to decrease. At xa2n = 1:0 (pure species 2) the critical cluster size
is 235 particles. Note that this cluster size is smaller than the critical nucleus size at
xa2n = 0:0. This is due to the fact that species 2 is less volatile than species 1.

Let us next examine the structure of the critical nuclei. Clarke et al. [148] reported
a computer-simulation study of binary liquid Lennard-Jones clusters in vacuo. The
simulations of Ref. [148] were performed at a reduced temperature T = 0:31, which is less
that half the temperature that we imposed during our simulations. Clarke et al. found
that for ��22 6= 1:0 and �� > 0:0, spherical clusters can occur that consist of a core rich in
the less volatile component, coated by a shell rich in the more volatile component. Such
behavior is to be expected on the basis of macroscopic (wetting) arguments. However,
under the conditions studied in our simulations, we �nd little evidence for the existence
of such compositional inhomogeneities. In almost all clusters that we studied, the two
species appeared well mixed. Only for the critical nuclei at �� = 0:5 and xa2n = 0:52 do
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Figure 7.3 Radial density pro�le of species one and two for a critical
nucleus in a system with ��22 = 1:1 and �� = 0:5. The normalized activity
fraction is xa2n = 0:52 and the height of the nucleation barrier is �Y �0 =
56:7kBT . Units as in Fig.1.

we �nd that the concentration of species 1 (the more volatile component) is signi�cantly
higher in the surface than in the core of the droplet (see Fig. 7.3).

7.4.2 Symmetric mixtures

We studied symmetric mixtures, for which ��22 = 1:0, for the following values of the
mixing parameter ��: �� = �0:1; 0:1; 0:3; 0:5 and 0:7. The symmetric mixture with
�� = 0:0 corresponds to an ideal-mixture, that is, �11 = �22 = �12. We will use this
\mixture" as a reference. The mixtures for �� 6 0:3 are weakly non-ideal and the
species are fully miscible in the bulk liquid. However, for �� > 0:3, the species demix
in the bulk. Below, we �rst discuss the weakly non-ideal mixtures and subsequently the
mixtures that show a macroscopic miscibility gap.

7.4.2.1 Weakly non-ideal liquid mixtures The weakly non-ideal liquid mixtures do
not show bulk liquid-liquid phase separation and, not surprisingly, the two species are
also fully mixed in the critical nuclei. However, depending on the sign of ��, nucleation
is either enhanced or hindered by mixing. Fig. 7.4 shows the pressure as a function of
the activity fraction. Note that as species 1and 2 have identical properties, the �gure
is symmetric around xa2n = 0:5. For comparison, we also show the contour (a straight
line) for the ideal mixture. For negative values of ��, mixing of the two species in the
critical cluster lowers the pressure that is needed to maintain a constant barrier height.
In other words, mixing enhances the nucleation process. For positive values of �� the
vapor pressure has to be increased in order to keep the height of the barrier constant.
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Figure 7.4 The reduced pressure P as a function of the normalized
activity fraction xa2n for symmetric mixtures (��22 = 1:0) with di�erent
values of the mixing parameter �� (�Y �0 = 56:7kBT ). The curve for the
ideal mixture with ��22 = 1:0 and �� = 0:0 is indicated by the straight solid
line. Units as in Fig.1.

This behavior can be understood by examining the compositions of the critical nuclei.
Fig. 7.5 shows the excess number of particles of species 1 and 2 as a function of the
activity fraction for �� = �0:1 and �� = 0:1. Again, we also show the (trivial) result
for the ideal mixture. For such a mixture, both the composition of the critical nucleus
and that of the vapor phase are equal to the activity fraction. Moreover, for an ideal
mixture the size of the critical nucleus does not depend on composition.

For negative values of �� the critical-nucleus size shrinks when the species are mixed.
Moreover, critical nuclei are enriched in the minority component when compared to the
ideal mixture. For positive values of ��, the opposite behavior is found. This can be seen
more clearly in Fig. 7.6, which shows the molar fraction x2 of species 2 in the critical
nucleus as a function of the activity fraction xa2n (i.e. the composition in the dilute
vapor).

7.4.2.2 Demixing transition Let us now consider the more strongly non-ideal mix-
tures that have a tendency to demix in the bulk, i.e. mixtures with large positive values
of ��.

When �� is increased, the critical clusters become increasingly enriched in the ma-
jority component as compared to the ideal mixture. Fig. 7.7 shows the composition of
the critical cluster as a function of the activity fraction for �� = 0:5. It is seen that up
to an activity fraction of xa2n = 0:5, the cluster almost exclusively consists of species
1, whereas for an activity fraction xa2n > 0:5 it consists almost only of species 2. Still,
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Figure 7.5 The excess number of particles of species 1 and 2 (as well
as their sum) in critical nuclei as a function of the normalized activity
fraction xa2n for three symmetric mixtures that di�er in the value of ��.
The ideal mixture with ��22 = 1:0 and �� = 0:0 is indicated by the straight
solid lines and the onset work of formation is �Y �0 = 56:7kBT .

for xa2n = 0:5, x2 = 0:5. That is, at xa2n = 0:5, both species are present in equal
amounts in the critical cluster. Yet, at �� = 0:5, the bulk liquid already exhibits phase
separation. We thus have a situation in which the species are mixed in the cluster, but
phase separated in the bulk liquid. A natural question to ask is therefore the following:
how do these critical nuclei develop into a bulk liquid?

To answer this question, we have computed the free energy as a function of the
composition for clusters of di�erent size, at �� = 0:5 and xa2n = 0:5. We have studied
a pre-critical cluster of 255 particles, a pre-critical cluster of 368 particles, a cluster
near the top of the barrier of 472 particles, and a postcritical cluster of 571 particles.
Fig. 7.8 shows the free energy as a function of composition x2 for these clusters. It
is seen that the free-energy curve of the cluster of 255 particles only shows one broad
minimum at x2 = 0:5. However, for a cluster size of around 368 particles, the free-energy
curve starts to develop two minima, centered at x2 = 0:3 and x2 = 0:7, separated by a
small free-energy barrier at x2 = 0:5. For larger cluster sizes, the minima shift to the
one-component limits and the free-energy barrier separating the two minima increases.
As the mixture is symmetric, the free-energy curves are symmetric around x2 = 0:5:

The important point to note, is that the saddle-point that separates the stable liquid
from the metastable vapor, does not correspond to a critical cluster in which both species
are mixed and equally present. Rather, there are two saddle points of equal free energy.
Both saddle-points correspond to a critical cluster of around 440 particles, but at one the
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Figure 7.6 Cluster composition x2 as a function of the normalized ac-
tivity fraction xa2n for (symmetric) mixtures with ��22 = 1:0 and an onset
work of formation �Y �0 = 56:7kBT . The ideal mixture with ��22 = 1:0 and
�� = 0:0 is indicated by the thick solid line.

cluster is of composition x2 = 0:3, whereas the composition in the cluster at the other
saddle-point is x2 = 0:7. However, the free-energy barrier separating the two saddle-
points is still so low that the critical cluster can easily jump back and forth between
them.

As the critical nucleus evolves into a postcritical nucleus, there comes a point where
the free-energy barrier that separates the two minima becomes too large for the cluster
to cross. Two \channels" in the free-energy landscape have developed, one leading to a
bulk liquid rich in species one, the other to a bulk liquid rich in species two. Although
both pathways for the formation of the bulk liquid are equally probable and both bulk
liquid phases are equally likely to occur, once the system has chosen either path, it has
to follow that path{it cannot make the transition to the other channel anymore.

Yet, because rapid interconversion between the two critical nuclei is possible, the
nucleation theorem would indicate a 50-50 composition of the critical nucleus. Clearly,
this refers to the average composition of the critical nucleus. In particular, a macroscopic
droplet of phase 1 may well have evolved from a critical nucleus that was rich in species
2. Hence, this implies that experiments on nucleation in moderate non-ideal mixtures,
the nucleation theorem will not reveal the true saddle-point in the nucleation pathway.
Recent experiments by Viisanen et al. on nucleation in binary mixtures of nonane
with short-chain alcohols, may well belong to this category [136]. In fact, it would be
interesting if the nucleation rates of the two phases of the bulk liquid could be measured
independently: if the \bifurcation" in the free-energy landscape occurs after the critical
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Figure 7.7 Size and composition of the critical nuclei as a function of
the normalized activity fraction xa2n for a symmetric mixture (��22 = 1:0)
with �� = 0:5 (�Y �0 = 56:7kBT ). For comparison we also inidicate the
composition of the ideal mixture with ��22 = 1:0 and �� = 0:0.

nucleus is formed, then the nucleation theorem will reveal the same critical nucleus
for both liquids. However, if there is a high free energy barrier between the critical
nuclei that evolve into the two bulk phases, then the two nucleation rates will reveal the
existence of two distinct critical nuclei. In our model system, this would be the case for
�� = 0:7.

For �� = 0:7 and xa2n = 0:5 the path for the formation of the bulk liquid bifurcates
for clusters that are appreciably smaller than the critical-nucleus. We now have two
di�erent types of critical nuclei, one rich in component 1 and the other rich in component
2. At xa2n = 0:5 the two types of critical nuclei are of equal free energy and are formed
with equal probability. However, once the critical nucleus of either type is formed, it
cannot transform into the other type, due to the large free-energy barrier separating the
two saddle-points. Furthermore, the dependence of both the pressure and the cluster
composition x2 on the activity fraction xa2n for �

� = 0:7, exhibits hysteresis at xa2n = 0:5,
as can be seen in Figs. 7.4 and 7.6, respectively. This is due to the free-energy barrier
separating the two types of nuclei. Only at xa2n = 0:52 (or xa2n = 0:48) the height of the
barrier is su�ciently reduced that the transition from one type of cluster to the other
can take place on the time-scale of a simulation.

The possibility of the simultaneous occurrence of two types of critical clusters was
predicted by Talanquer and Oxtoby [39], using density functional theory, and by Ray et
al. [149] using classical nucleation theory. The present simulations con�rm this predic-
tion. Of course, as the simulations illustrate, only at xa2n = 0:5 do both types correspond
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Figure 7.8 Excess free energy as a function of the composition x2 for
nuclei of di�erent size in a system with ��22 = 1:0 and �� = 0:5. The
activity fraction is xa2n = 0:5 and the imposed pressure P = 0:021, corre-
sponding to a barrier height of �Y �0 = 56:7kBT . The size of the critical
cluster, i.e. the cluster at the top of the free-energy barrier, is around 440
particles. In order to facilitate the comparison of the free-energy curves
we have set the free energy of the minima to zero.

to the same free energy. For 0:48 < xa2n < 0:5 the clusters rich in component 1 have the
lowest free energy, and for 0:5 < xa2n < 0:52, those that are rich in component 2.

An interesting prediction that was made on basis of density-functional theory by
Talanquer et al. [39] is that, when the mixtures exhibit a large miscibility gap in the
bulk, cylindrical critical nuclei can appear. The remarkable feature of these nuclei is
that the species have (micro) phase-separated inside the nucleus. In fact, this type of
nucleus has been observed by Clarke et al.[148] in a computer-simulation study of binary
liquid Lennard-Jones clusters in vacuo. In our simulations, we explored in some detail
the possibility of micro-phase separation in critical clusters. Talanquer and Oxtoby [39]
predict that such cluster should appear for �� � 0:6 and xa2n = 0:5. As discussed
above, we �nd that for xa2n = 0:5 and �� � 0:5, the saddle points that separate the
bulk liquid from the metastable vapor correspond to nuclei that are enriched in one of
the species. We never found evidence for free-energy saddle points that correspond to
cylindrical nuclei. This is not in contradiction to the �ndings of Clarke et al.[148]: our
simulations do not rule out the possibility that phase-separated clusters form at the top
of the barrier separating the two saddle points. However, such clusters then correspond
to local free-energy maxima and should play no role in the nucleation process. We
have examined the structure of nuclei at the top of the barrier and in the vicinity of
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x2 = 0:5. For �� = 0:5 we found that, at the top of the (shallow) ridge separating the
two critical nuclei, the species were mixed, rather than phase separated. Even when we
\prefabricated" a cylindrical cluster and constrained the cluster at a molar fraction of
around 0.5, we found that after typically 5000 MC-cycles the species mixed again, and
that the, initially cylindrical droplets transform into a spherical shape. For �� = 0:7,
the situation is slightly more complex. The \unprepared" clusters at the top of the ridge
were not cylindrical, although a visual inspection of the snapshots indicated that the
species have a strong tendency to phase separate. Nuclei that were prepared in a phase-
separated, cylindrical con�guration, remained there for the length of the simulation,
provided that the composition of the cluster was kept �xed at x2 = 0:5. However, as
soon as the composition of the cluster was allowed to adjust, all phase-separated clusters
transformed back into a spherical clusters that were enriched in one of the two species.
This illustrates that the cylindrical nuclei correspond to local free energy maxima and
therefore cannot play a signi�cant role in the nucleation process.

7.5 Conclusions

We have developed a new scheme to study critical nuclei involved in gas-liquid nucleation
of binary mixtures. Our numerical scheme allows us to compare clusters that have the
same barrier height, but di�erent compositions. The numerical scheme was found to be
both e�cient and accurate. Using it, we performed a detailed study of the composition
of critical nuclei in binary systems. The results of our simulations support the density
functional predictions of Talanquer and Oxtoby [39] on the nucleation of weakly non-
ideal mixtures. These mixtures condense via a single type of critical nucleus, in which
the components of the mixture can be mixed in all proportions. Depending on the value
of the mixing parameter, mixing either enhances or inhibits nucleation.

For the nucleation of mixtures that show a macroscopic miscibility gap, the pictures
that emerges is more complex. We �nd that nucleation in these systems can still be
initiated by clusters in which both species are mixed. However, when the cluster size
increases, the path bifurcates and two channels develop, corresponding to nuclei enriched
in one of the two components. In all cases, the critical nuclei are found to have a
spherical shape. The cylindrical, micro-phase separated nuclei predicted by Talanquer
and Oxtoby [39], only appear at the top of the free-energy ridge separating the two types
of critical nuclei. The cylindrical clusters do not correspond to saddle-points and they
probably play no role in the nucleation of immiscible mixtures.

The cluster size at which the bifurcation of the path occurs depends on the value of
the mixing parameter. Hence, whether or not one or two types of critical nuclei can be
formed depends on the supersaturation and the value of the mixing parameter. For larger
values of ��, larger supersaturations, corresponding to smaller critical-nucleus sizes, are
required in order to �nd mixed critical nuclei. Correspondingly, when the nucleation
process is dominated by one type of critical cluster at a given supersaturation, it can
proceed via two types of nuclei at smaller supersaturation. This also implies that, in
experiments on the nucleation behavior of partially miscible or immiscible mixtures, care
should be taken when deriving the composition of the critical nuclei from the variation
of the nucleation rate with supersaturation [136]. Our simulations suggest that the
measured average composition of the nucleus need not be the most likely one.





8 Coil-Globule Transition in
Gas-Liquid Nucleation of Polar
Fluids

We report a computer-simulation study of homogeneous gas-liquid nucleation in a model

for strongly polar 
uids. We �nd that the nucleation process is initiated by chain-like

clusters. As the cluster size is increased, the chains become longer. However, beyond

a certain size, the nuclei collapse to form compact, spherical clusters. Nevertheless, in

the interface of the collapsed nuclei a high degree of chain formation is preserved. We

compare the interface of the collapsed nuclei with the planar interface and �nd that the

interface of the globule-like nuclei di�ers markedly from the 
at interface. Classical

nucleation theory underestimates both the size of the critical nucleus and the height of

the nucleation barrier.

8.1 Introduction

The formation of a water droplet from the vapor is probably one of the best known
examples of homogeneous nucleation of a polar 
uid. However, the best known is not the
same as best understood. In fact, recent experiments indicate that classical nucleation
theory seriously overestimates the rate of nucleation for strongly polar substances, such
as acetonitrile, nitrobenzene and benzonitrile [33, 34].

As the variation in the nucleation rate is dominated by the variation in the free-
energy barrier, the evaluation of the nucleation barrier is of primary importance. In
order to calculate the free-energy barrier that separates the liquid from the metastable
vapor phase, in classical nucleation theory it is assumed that the nuclei at the top
of the nucleation barrier, the so-called critical nuclei, are compact, spherical objects,
that behave like small droplets of bulk 
uid. In chapter 5 we have shown that, for
a typical non-polar 
uid, the well-known Lennard-Jones system, the critical nuclei are
indeed compact, more or less spherical clusters. This is not surprising as the interaction
potential is isotropic. However, the interaction potential of a polar 
uid is anisotropic.
It has therefore been suggested that in the critical nuclei the dipoles are arranged in
an anti-parallel head-to-tail con�guration [33, 34], giving the clusters a non-spherical,
prolate shape, which changes the volume to surface ratio. In the oriented dipole model
introduced by Abraham [150], it is assumed that the dipoles are perpendicular to the
interface, yielding a size dependent surface tension due to the e�ect of curvature of
the surface on the dipole-dipole interaction. However, in a density-functional study
of a weakly polar Stockmayer 
uid, it was found that on the liquid (core) side of the
interface of critical nuclei, the dipoles are not oriented perpendicular to the surface, but
parallel [151].



140 Coil-Globule Transition in Gas-Liquid Nucleation of Polar Fluids

In the present study, we report on a computer simulation study of the structure and
free energy of critical nuclei, as well as pre-and postcritical nuclei, of a highly polar
Stockmayer 
uid. In the Stockmayer system, the particles interact via a Lennard-Jones
pair potential plus a dipole-dipole interaction potential

v(rij;�i;�j) = 4�

"�
�

rij

�12

�
�
�

rij

�6
#

� 3(�i � rij)(�j � rij)=r5ij + �i � �j=r
3
ij:

(8.1)

Here � is the Lennard-Jones well depth, � is the Lennard-Jones diameter, �i denotes the
dipole moment of particle i and rij is the vector joining particle i and j.

The phase behavior of this system has been studied in detail by computer simula-
tion [152, 153] and by density-functional theory [154], as well as by more phenomeno-
logical theories [155]. The simulations suggest that a minimum amount of dispersive
attraction is required to observe gas-liquid phase coexistence [152]. If the attractive
forces are too small in comparison to the strength of the dipolar interactions, as for soft
sphere [35] and hard sphere [36, 156] dipolar 
uids, the system appears unable to con-
dense to form a liquid, but generates a \gel" of chains of dipoles that align head-to-tail.

In the present study we are interested in the nucleation behavior of strongly polar

uids; the reduced dipole moment �� = �=

p
��3 = 4. This dipole moment is still well

below the threshold value of �� = 5 [153] beyond which the Stockmayer system does not
show gas-liquid phase coexistence anymore. In fact, it is comparable to that of water,
although the nucleation behavior of water is probably more dominated by hydrogen-
bonding.

The rest of the chapter is organized as follows. We �rst present a new approach to
determine the size distribution of liquid clusters in a vapor. In section 8.3 we give the
computational details of the simulations and we end with a discussion of the results.

8.2 Determination of cluster-size distribution

In homogeneous gas-liquid nucleation the density is usually so low that without associ-
ation the gas would be ideal. However, the temperature is low enough for particles to
associate into dimers, trimers, etc.. Still, the concentration of n-mers is so low that we
can safely ignore their mutual interactions. We thus have an ideal \solution" of n-mers
in the vapor phase.

The identi�cation of a cluster is not unambiguous and can only be performed explic-
itly after choosing a criterion that must be ful�lled by the particles that constitute an
n-mer. For now, let us assume that we have such a criterion. We can then de�ne the
partition function Zn of an n-mer (see chapter 4) as

Zn =
V n3

�nn!

Z
dr0

n�1
wn(r

0n�1) exp[��Un(r
0n�1)]; (8.2)

where � � 1=kBT is the reciprocal temperature, with kB Boltzmann's constant and
T the absolute temperature, V is the total volume of the system, r0n�1 denotes the
coordinates with the prime indicating that the coordinates are taken with respect to the
center-of-mass of the cluster, Un(r

0n�1) is the interaction energy, wn(r
0n�1) is the cluster
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criterion and � is the thermal volume

� = �3 � h3p
(2�kBT )3I1I2I3

; (8.3)

where � is the thermal De Broglie wavelength and I1, I2, I3 are the principle moments
of inertia.

We have adopted a geometric cluster criterion. All particles that are within a cuto�-
distance qc = 1:5 from each other are considered to be \connected", and, therefore,
belong to the same cluster. Thus the cluster criterion wn(r

0n�1) is given by

wn(r
0n�1) = 1; if all n particles are mutually connected;

= 0; otherwise.
(8.4)

As the interactions between the clusters is neglected, the number of clusters Nn is
given by (see chapter 4)

Nn = Zn exp[��n]; (8.5)

where � is the imposed chemical potential. The number of clusters of size Nn is an
extensive quantity that depends on the size of the system. We therefore de�ne an
intensive probability P (n),

P (n) � Nn=N; (8.6)

that relates the average number Nn of clusters of size n to the total number of particles
N in the system. The free-energy 
 of a cluster is de�ned as

��
(n; �; V; T ) � � ln[P (n)]: (8.7)

The cluster-size probability distribution function P (n) is an equilibrium quantity
and can be measured both by Monte Carlo and Molecular Dynamics. In principle,
one could measure P (n) simply by simulating a metastable vapor and counting the
number of clusters. However, at moderate supersaturations, only small n-mers will
be formed that have a free energy 
 in the order of a couple of kBT . But, critical
nuclei, that is nuclei at the top of the free-energy barrier separating the stable liquid
from the metastable vapor, have a free energy in the order of 50 � 75kBT . Hence, the
probability that such critical nuclei will be formed spontaneously is extremely small. To
obtain good statistics for all cluster sizes, we have therefore used the umbrella sampling
technique [26]. The main idea is to bias the sampling of con�guration space and correct
for the bias afterwards. We can bias the sampling of con�guration of space by adding a
�ctitious potential that is a function of an order parameter to the true potential of our
model system. As explained in detail in chapter 4 the use of a global order parameter,
such as the density of the system or the total number of liquid particles, has some serious
drawbacks from a computational point of view. If the volume is large, it will be always
be entropically favorable to distribute a given amount of the new phase over many but
small clusters, rather than over one relatively large liquid cluster. In fact, if the volume is
su�ciently large, the change in free energy associated with a small homogeneous density

uctuation will be smaller than the change in free energy due to the formation of a
liquidlike droplet. However, for the nucleation process, we are interested in the largest
liquid cluster that grows to its critical size. We therefore exploit the fact that the clusters
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can be decoupled from the surrounding vapor and simulate only one cluster in the grand
canonical ensemble. The order parameter is taken to be the size of this cluster.

Kusaka et al. [122] showed how the size distribution of a cluster can be obtained in
the grand canonical ensemble. In their scheme, all particles in the system are considered
to be part of the same cluster. Consequently, all density 
uctuations in the system
participate in the nucleation event. However, this requires that the volume of the system
is chosen carefully. On the one hand, the volume should be larger than the spatial extent
of the physical cluster in it. On the other hand, as discussed above, the volume should
also not be too large. If the volume is too large, the cluster will break up into many
small clusters (see chapter 4).

The use of a geometric cluster criterion does not only provide a unique de�nition of
the cluster, but also circumvents this problem. For large system sizes, it ensures that
the particles that make up the cluster are always connected. But more importantly, it is
not even required that the volume into (from) which the particles are inserted (removed)
is larger than the size of the cluster. This is particularly important when the cluster
is not compact but rami�ed. In the scheme by Kusaka [122] and in the approach of
Lee, Barker and Abraham [100] it is conceivable that the constraining sphere biases the
shape of the nucleus. In contrast, our scheme does not impose a certain cluster shape.

In order to see this, consider the combined system shown in Fig. 8.1. In our grand-
canonical MC scheme, we only consider particle additions to and removals from a spher-
ical volume Vs around the center-of-mass of the cluster. The center-of-mass is computed
for the cluster excluding the particle to be added or removed. The acceptance probabil-
ity for the insertion (removal) of particles into (from) a sphere of volume Vs placed in a
system of volume V is given by [157]

�(n! n+ 1) =
Vsw(r

n+1)

(M + 1)w(rn)
exp [��] exp

��� �U(rn+1)� U(rn)
��

�(n+ 1! n) =
(M + 1)w(rn)

Vsw(rn+1)
exp [���] exp ��� �U(rn)� U(rn+1)

��
:

(8.8)

Note that in the above expressions the number of particlesM in the sphere is appearing,
but not the total number of particles n in the cluster. Still, the potential energy U
contains not only contributions from the interactions between particles inside the sphere,
but also from interactions between particles in- and outside the sphere. Note also that
only the volume of the sphere enters the expression and not the total volume of the
system. The cluster criterion is included in the acceptance criterion to ensure that the
cluster remains connected.

8.3 Computational details

8.3.1 Nucleation barrier

We have computed the cluster-size distribution via the grand canonical scheme discussed
in section 8.2. However, rather than checking for the connectivity of the particles in the
cluster at every trial move, we adopted a staged scheme in which we only checked for
the connectivity of the cluster at �xed intervals.
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V Vo−V

Vs

Figure 8.1 Ideal gas (No � N particles, volume Vo � V ) can exchange
particles with an N -particle system of volume V . The particles are only
removed/inserted from/into a sphere of volume Vs, containing M of the
N -interacting particles.

In the �rst stage a series of Monte Carlo cycles is performed. In each MC cycle, we try
to both displace particles and insert or remove particles. In one cycle, on average every
particle is given one trial displacement and the choice between the trial insertion/removal
moves and the trial displacement moves is made at random, with 60% probability for
the latter. The trial displacements are accepted with the usual Metropolis acceptance
criterion. That is, we do not check whether the connectivity of the cluster is broken.
Only in the second stage, after this sequence of typically 5-10 MC-cycles, we will check
whether all particles are still connected to one another. If not all particles are mutually
connected with each other, we reject the entire sequence.

When a particle is to be inserted, we �rst determine the center-of-mass of the cluster.
The particle is then inserted at a random position inside a sphere centered at the center-
of-mass of the cluster. The addition of a particle is accepted with a probability

acc(n! n+ 1) =

min

�
1;

Vs
M + 1

exp [��] exp
��� �U(sn+1) +W (n+ 1)� U(sn)�W (n)

���
;

(8.9)

where W (n) is the biasing potential. The biasing potential was taken to be a harmonic
function of the cluster size n

W (n) =
1

2
kn(n� n0)

2: (8.10)

When a particle has to be removed, we �rst randomly select the particle to be
removed. In order to preserve the symmetry of the underlying Markov chain, we then
determine the center-of-mass of all particles except the particle to be removed and check
whether the selected particle is inside the sphere centered at the center-of-mass. If the
particle is outside the sphere, we repeat this procedure, until we have found a particle
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which is inside the sphere. The removal of the particle is then accepted with a probability

acc(n! n� 1) =

min

�
1;
M

Vs
exp [���] exp ��� �U(sn�1) +W (n� 1)� U(sn)�W (n)

���
:

(8.11)

The height of the barrier should not depend on the size of the sphere. In particular,
the sphere need not contain the entire cluster. We have veri�ed that the results are
indeed insensitive to the size of the sphere. However, the size of the sphere does a�ect the
e�ciency of the simulation. If the sphere is large, the insertion and removal probability,
given by Eq. (8.9) and Eq. (8.11), are relatively large. However, the probability that
the connectivity of the cluster is broken after the Monte Carlo sequence, will also be
increased, and thus the probability that the trajectory has to be rejected. For smaller
spheres the balance is reversed. In addition, if the sphere is very small, it can happen
that the sphere does not contain any particle to be removed. We found that, depending
on the shape and size of the clusters, a sphere of radius 5� 10� is optimal.

The number of umbrella windows for the free-energy barrier was 25. Most simulations
in a window consisted of an equilibration period of 5�105 cycles, followed by a production
run of 5� 105 � 2� 106 cycles. Especially for the smaller clusters very long production
runs were required, as they exhibit strong shape 
uctuations. The results that we report
here are free of hysteresis.

8.3.2 Coexistence point

The coexistence point was determined by calculating the chemical potential as a function
of pressure for both the vapor and liquid phase. The chemical potential and pressure at
coexistence was then found from the intersection.

In order to obtain for the vapor phase the chemical potential as a function of pressure,
we �rst determined for a vapor at low pressure Po (so low that association of monomers
does not occur), the chemical potential by the Widom insertion technique [158]. The
chemical potential � as a function of pressure was then obtained by integrating the
inverse density � as a function of pressure P

�(P ) = �(Po) +

Z P

Po

1

�(P 0)
dP 0: (8.12)

For the liquid phase we have to follow a di�erent procedure, as the strong �rst-order
phase transition separating the liquid from the vapor phase rules out the integration
along the isotherm from a low-density vapor. We therefore exploited the fact that the
liquid-vapor critical point of the Lennard-Jones system (Tc = 1:316 [123]) is much lower
than that of the Stockmayer system (Tc = 5:07 [153]). We �rst computed the chemical
potential for a Lennard-Jones system at a reference density �o = 0:8 by Widom insertion
at low density and integration along the equation-of-state (see Eq. (8.12)). After we have
obtained the chemical potential for the Lennard-Jones system at �o, we can determine
the chemical potential for the Stockmayer system at this density by computing the
reversible work to switch on the dipolar interactions.
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In order to �nd a reversible path from the Lennard-Jones system to the Stockmayer
system, we have used the following interaction potential

v(�) = vLJ + �vdip: (8.13)

For � = 1 the above interaction potential is given by Eq. (8.1), whereas for � = 0 the
interaction potential reduces to the Lennard-Jones potential. The chemical potential
�(� = 1; �o) of the Stockmayer system is now related to the chemical potential �(� =
0; �o) of the Lennard-Jones system via

�(� = 1; �o) = �(� = 0; �o) +

Z 1

0

hvdipi�d�+ 1

�o
[P (� = 1)� P (� = 0)] :

(8.14)

Once we know the chemical potential of the Stockmayer system at a given density �o
(and pressure Po), we can obtain the chemical potential as a function of pressure by
integrating along the equation of state (see Eq. (8.12)).

All simulations of the bulk phases were performed using a system size of 256 parti-
cles. The simulations to compute equation-of-states were performed in the isothermal-
isobaric (NPT ) ensemble, whereas the simulations to calculate the free-energy di�erence
between the Stockmayer system and the Lennard-Jones system were done in the canon-
ical (NV T ) ensemble. In the simulations, the Lennard-Jones potential was truncated
at half the box size and the standard long-range corrections were added [147]. The
long-range dipolar interactions were handled with the Ewald summation technique us-
ing \conducting" boundary conditions [159]. Cubic periodic boundary conditions were
applied.

8.3.3 Surface tension

The surface tension was computed from a direct MC simulation of the two coexisting
phases, using the Ewald-summation technique to handle the long-range dipolar interac-
tions. A liquid slab was brought in contact with a vapor, from which the surface tension

 was obtained by measuring


 =
1

2
Lz(Pzz � 1

2
(Pxx + Pyy)): (8.15)

Here P�� is the �� element of the pressure tensor and Lz is the length of the system in
the direction perpendicular to the interface. The factor of 1=2 outside the bracket arises
from the fact that we have two liquid-vapor interfaces in the system. In the appendix
we describe how we have computed the pressure tensor.

In order for the density and pressure to approach bulk liquid values in the middle
of the slab, the slab should not be too thin. We therefore used a rectangular simu-
lation box, which allows for a relatively thick slab in comparison to the total number
of particles in the system. The sides were of length Lx = Ly = 1=4Lz, for the x-, y-
and z-direction, respectively, and periodic boundary conditions were applied in all three
coordinate directions. The maximum number of reciprocal lattice vectors parallel to the
interface was jkmax

x j = jkmax
y j = 7, whereas the number of wave vectors perpendicular to

the interface was jkmax
z j = 28. The larger number of reciprocal vectors in the z-direction

makes the simulations signi�cantly longer, but this is unavoidable in order to achieve
the same convergence of the Ewald-sum in all principal directions.
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The Lennard-Jones interaction potential was truncated at rc = 0:5Lx and the tail
correction to the surface tension was evaluated from [160]


tail = 12��

Z 1

1

Z 1

�1

�(z1)�(z2)(1� 3s2)r�4drdsdz1; (8.16)

where s = (z1 � z2)=r and z1 and z2 are the position of particles 1 and 2, respectively.
The density pro�le was �tted to a hyperbolic tangent function of the form

�(z) =
1

2
(�l + �v)� 1

2
(�l � �v)tanh[(z � zo)=d]; (8.17)

where �l and �v are the densities of the liquid and vapor respectively, and zo and d are
parameters for the location of the dividing surface and the thickness of the surface. With
the above �t for the density pro�le, the tail correction becomes [160]


tail = 12��(�l � �v)
2

Z 1

0

ds

Z 1

rc

drcoth(rs=d)(3s3 � s)r�3: (8.18)

In order to establish that our system is in equilibrium we also studied the real-
space contribution to the normal and tangential components of the pressure tensor as
a function of z. When the system is in equilibrium, the normal component should be
equal to the transverse component away from the interfaces.

For an inhomogeneous 
uid there is no unambiguous way to calculate the components
of the pressure tensor. We have used the Irving-Kirkwood convention [119]. The system
is divided into Ns slabs parallel to the interface. The local normal (pN (s)) and tangential
pT (s) components of the pressure tensor are given by

pN(s) = kBT h�(s)i+ 1

Vs

*X
i;j

s
z2ij
rij

f(rij;�i;�j)

+
; (8.19)

and

pT (s) = kBT h�(s)i+ 1

2Vs

*X
i;j

s
x2ij + y2ij

rij
f(rij;�i;�j)

+
; (8.20)

where �(s) is the average density in slab s, Vs = LxLyLz=Ns is the volume of the slab and

f(rij;�i;�j) = �@v(rij ;�i
;�

j
)

@rij
is the force acting between particle i and j.

Ps
i;j denotes

a summation that runs over all pairs of particles i and j for which the slab s (partially)
contains the line that connects them. The contribution to the virial of a slab from a
given pair is determined by the ratio to which the slab contains the line.

We performed a simulation with 512 particles and one with 2000 particles, to check
for �nite-size e�ects. The number of equilibration cycles was 100000 and the number of
production cycles was 200000.

8.4 Results and discussion

All simulations were performed at T � = kBT=� = 3:5 (with kB Boltzmann's constant),
which is approximately 30% below the critical temperature of T �

c = 5:07 [153]. We �rst
study the formation of a critical nucleus at an imposed chemical potential � = �26:0�.
This corresponds to a supersaturation S = (P=Pcoex � exp[���]) = 1:26, where �� =
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Figure 8.2 The excess free energy ��
 of a cluster as a function of its
size n, for a Stockmayer system at S = 1:26 and T � = 3:5. The reduced
dipole moment �� = �=

p
��3 = 4.

� � �coex, with � (P ) the imposed chemical potential (pressure), and �coex (Pcoex) the
chemical potential (pressure) at coexistence. Fig. 8.2 shows the excess free energy of a
cluster as a function of its size at this degree of supersaturation.

From the free-energy barrier measured at this degree of supersaturation, we can
directly obtain the nucleation barrier at any degree of supersaturation, as long as the
interactions between the clusters can be neglected. In that case the partition function
Zn of an n-mer is independent of fugacity. That is, the con�guration integral of Zn in
Eq. (8.2) does not depend on the imposed chemical potential. We can then combine
Eq. (8.2) and Eq. (8.5) with Eq. (8.7) to arrive at

��
(n; �0; V; T ) = ��
(n; �; V; T )� �(�0 � �)n

+ ln [�(�0)=�(�)] ;
(8.21)

where � = N=V is the total number density in the system. We have veri�ed that our
simulations indeed satisfy this equation by computing the free-energy barriers for two
di�erent chemical potentials. Furthermore, we have compared the structure of the nuclei
at one chemical potential with that at the other chemical potential. The analysis of the
structural order parameters, which will be discussed below, indicate that the nucleus
structure is independent of the imposed fugacity. This provides further evidence that
the sampling of con�guration space and hence the evaluation of the con�guration integral
in Eq. (8.2) does not depend on the chemical potential. We have therefore determined
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the free-energy barrier as a function of supersaturation from the computed free-energy
barrier at S = 1:26, using Eq. (8.21).

As the structure of the clusters does not depend on the imposed fugacity, we only
discuss the structure analysis performed at S = 1:26. After the structure analysis we will
consider how the nucleus structure determines the free-energy barrier. We compare the
free-energy barrier, as well as the critical nucleus size, with the corresponding predictions
of classical nucleation theory. However, in order to compare the structure of the nuclei
with that of the bulk liquid, we �rst investigate the structural order in the liquid.

8.4.1 Equilibrium phase behavior

Stevens and Grest found evidence for the existence of dipolar order in the 
uid phase,
albeit for di�erent conditions (i.e. higher temperature and pressure) [153]. We therefore
checked whether the bulk liquid also exhibits ferro-electric ordering at the temperature
and range of pressures at which we study the nucleation process.

Ferro-electric ordering can be characterized by the order parameter P1, which is
de�ned as

P1 =
1

N

NX
i=1

j�̂i � d̂j =
1

�N
jM � d̂j; (8.22)

where �̂i is a unit vector specifying the orientation of the dipole of particle i, M is

the total dipole moment of the system and d̂ is the director, which is the eigenvector
corresponding to the largest eigenvalue of the Q-tensor

Q =
1

N

NX
i=1

�
3

2
�̂i�̂i �

I

2

�
: (8.23)

For a fully ordered system P1 = 1. We found that P1 did not di�er signi�cantly from zero
for the bulk liquid at the temperature and supersaturations considered in the simulations.
Hence, the system does not show signi�cant ferro-electric ordering.

Yet, it is conceivable that in the bulk liquid a high degree of chain formation is
present. We therefore examined the chain-size distribution. We have adopted the fol-
lowing chain-criterion: particles i and j are part of the same chain if for both particles
the dot-product �̂i=j � r̂ij exceeds a certain threshold. Fig. 8.3 shows the chain size
distribution for di�erent threshold values. As expected, the size distribution is slightly
sensitive to the value of the threshold. Still, it is clear that most chains consist of only
one to four particles and that chain formation is not very pronounced. We therefore
conclude that the bulk liquid at the temperature and range of pressures considered in
the simulations is isotropic.

8.4.2 Coil-Globule transition

In classical nucleation theory it is assumed that even the smallest droplets are spherical.
In fact, this is a reasonable approximation for a typical model system for non-polar 
uids,
the Lennard-Jones system. In chapter 5 we showed that precritical nuclei as small as 10
particles are already quite compact, spherical objects. However, the interaction potential
of the Lennard-Jones system is isotropic, whereas the dipolar interaction potential is
anisotropic. It is possible that this a�ects the shape of the small clusters. Indeed, for
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Figure 8.3 Probability distribution functions of the chain-length l in
a a thermally equilibrated bulk liquid at a supersaturation of S = 1:76
(T � = 3:5 and P � = 0:005). The di�erent curves correspond to di�erent
threshold values of the chain-criterion (see text).

bulk hard-sphere and soft-sphere dipolar 
uids at low temperature, it has been observed
that particles associate into chains [35, 36]. On the other hand, as discussed in the
previous section, the bulk liquid is isotropic.

We �nd that clusters containing up to thirty particles form chains in which the
particles align head-to-tail. In fact, we �nd a whole variety of di�erently shaped clusters
in dynamical equilibrium with each other: linear chains, branched-chains, and ring-
"polymers". As the cluster size is increased, the \polymers" become longer. But, beyond
a certain size, the clusters collapse to form a compact globule. In order to quantify
this, we determined the size dependence of the radius of gyration, as well as the three
eigenvalues of the moment-of-inertia tensor I

I =
1

n

nX
i=1

riri; (8.24)

where ri is the vector joining particle i and the center-of-mass of the cluster. In Fig. 8.4
we show the square of the radius of gyration, divided by n2=3. For a compact, spherical
object R2

g scales with n2=3, whereas for chains R2
g scales with n�, where 1:2 < � < 2,

depending on the sti�ness of the chain. Hence, for chain-like clusters R2
g=n

2=3 should
increase with n, whereas for a globule it should approach a constant value.
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Figure 8.4 Radius of gyration Rg, and the three eigenvalues of the
moment-of-inertia tensor, as a function of cluster size n, at S = 1:26 and
T � = 3:5. Initially, the clusters are chain-like (snapshot top left), but at a
cluster size of n � 30 they collapse to compact, spherical nuclei (snapshot
top right).

Fig. 8.4 shows that initially R2
g=n

2=3 increases with the size of the cluster. Moreover,
one eigenvalue of the moment of the inertia matrix is much larger than the other two,
which indicates the strong tendency of clusters to form chains. However, at a cluster size
of about 30 particles R2

g=n
2=3 starts to decrease and approaches a constant value at a

cluster size of around 200 particles. Furthermore, at that point the three eigenvalues of
the moment-of-inertia tensor have also approached each other: the cluster has collapsed
to a compact spherical object.
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Figure 8.5 The distribu-
tion functions of the three
eigenvalues of the moment-
of-inertia tensor for a clus-
ter of around 300 particles
in a Stockmayer system at
T � = 3:5 (= 0:7Tc) and S =
1:26. For comparison we
also show the distribution
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spect to the critical temper-
ature (T = 0:7Tc). In this
and subsequent �gures � is
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8.4.3 Structure of collapsed nuclei

8.4.3.1 No global order An examination of the snapshots of the larger, globule-like
nuclei con�rm that they are compact, more or less spherical objects. To study this
in more detail, we have measured the probability distribution functions of the three
eigenvalues of the moment-of-inertia tensor. Fig. 8.5 shows the result. For comparison
we also indicate the distribution functions for a Lennard-Jones cluster of comparable
size (and at the same temperature with respect to the critical temperature). Note
that compared to the Stockmayer cluster the distribution functions of the Lennard-
Jones cluster are displaced to somewhat higher values. This is due to the slightly lower
density in the Lennard-Jones cluster. Yet, for both the Lennard-Jones system and the
Stockmayer system the distribution functions of the three eigenvalues overlap. Hence,
the clusters are quite spherical, although the larger spread of the distribution functions
of the polar cluster indicates that this cluster exhibits more pronounced 
uctuations
around the spherical shape. We do not �nd evidence for a prolate shaped cluster, in
which the molecules are aligned in an anti-parallel head-to-tail arrangement, as suggested
by Wright and El-Shall [33, 34]. A prolate structure would have two small eigenvalues
and one signi�cantly larger eigenvalue of the moment-of-inertia tensor. As can be seen
from Fig. 8.5, this is not the case. Furthermore, both the nematic order parameter P2,
which is the largest eigenvalue of theQ tensor de�ned in Eq. (8.23), and the ferro-electric
order parameter P1 (see Eq. (8.22)) are zero, indicating that there is no net parallel or
anti-parallel alignment of the dipoles in the cluster.

We also investigated the degree of circulating orientational order. To this end, we
computed the order parameter

�11 = j�11j =
 X

�=x;y;z

�211�

!1=2

; (8.25)
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Figure 8.6 The pro�le of
the orientational order pa-
rameter a2, as de�ned in
Eq. (8.27), for a planar in-
terface at coexistence and
for a cluster of approxi-
mately 300 particles at a
supersaturation S = 1:26.
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its equimolar dividing sur-
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with

�11� =
1

n

nX
i=1

(ê� � r̂i) � �̂i; (8.26)

where ê� is a unit-vector in the �-direction, �̂i denotes the orientation of the dipole of
particle i, and r̂i is the unit vector from the center-of-mass of the cluster to particle i.
This order parameter was introduced by Singer et al. [161] and measures the degree to
which the cluster contains dipoles circulating about a particular axis. Singer et al. [162]
have studied Stockmayer clusters consisting of 50 particles with a reduced dipole moment
of �� =

p
3, and found that the (liquid) clusters had an oblate shape with a large degree

of circulating orientational order up to T � = 0:8, which is 60% below T �
c . However, this

temperature is much lower than in the present simulations (T � = 0:7T �
c ) and indeed we

do not �nd evidence for an oblate shape (one eigenvalue of the moment-of-inertia tensor
would then be signi�cantly smaller than the other two), nor do we �nd any signi�cant
circulating orientational order (�11 < 0:14). Hence, the global order parameters indicate
that the large, collapsed clusters are spherical with no net global orientational order.

8.4.3.2 Interfacial structure In the previous section, we found that the larger, col-
lapsed nuclei are spherical, with no net global orientational order. Let us next examine
the local order. Given the spherical shape of the clusters it is meaningful to analyze the
local order as a function of the distance r to the center-of-mass of the cluster. Fig. 8.6
shows the radial pro�le of �2, which is de�ned as

�2 =
p
5=4�hP2(cos �)i; (8.27)

where � is the angle between the director of the dipole and the normal to the surface.
It measures the degree to which the dipoles are oriented perpendicular to the surface.
It is seen that �2 approaches zero in the center of the droplet. This indicates that the
orientation of the dipoles in the core of the droplets is isotropic and suggests that the
core of the droplet shows bulk liquid behavior. To verify this we have measured the
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Figure 8.7 Density pro-
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density pro�le, which is shown in Fig. 8.7. It is seen that also the density approaches a
bulk liquid value in the core of the droplets. It thus seems that the core of the larger,
collapsed nuclei are characterized by bulk liquid properties.

However, in the interface the nuclei start to loose their bulk liquid character. Fig. 8.6
shows that near the interface the orientation of the dipoles is not isotropic. In agree-
ment with previous simulation results [162, 163] and theoretical studies [151] we �nd
that at the liquid (core) side of the interface the dipoles tend to orient parallel to the
interface, whereas at the vapor side they prefer a perpendicular orientation. Hence, the
assumption that the dipoles are oriented perpendicular to the surface at the liquid side
of the interface [150], is not justi�ed for this polar 
uid.

In most nucleation theories it is assumed that the surface tension of a cluster is that
of a planar interface at coexistence. It is therefore natural to compare the structure of
the interface of the nuclei with that of the 
at interface. Fig. 8.6 shows the comparison
for the �2-pro�le. It is seen that also for the planar interface the dipoles tend to align
parallel to the interface at the liquid side, but perpendicular to the interface at the
vapor side. However, the ordering is much more pronounced for the planar interface at
the liquid side. In contrast, at the vapor side the ordering is stronger for the cluster
interface.

Still, both for the planar interface and the interface of the nuclei, �2 changes sign
after the equimolar dividing surface. In this respect, our �ndings are in agreement with
those of Singer et al. [162]. However, the simulation results are in contradiction with the
results of a density functional study of homogeneous nucleation in a (weakly) polar 
uid,
in which it was found that both for the planar interface and for the cluster interface, �2

changes sign before the equimolar dividing surface [151].
In our study of crystal nucleation in a Lennard-Jones system we found that the

structure of the small clusters, that initiate the nucleation process, still persists in the
interface of the larger clusters. To be more precise, we observed that the structure in the
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Figure 8.8 Radial pro�le of the coordination number for a Stockmayer
cluster at S = 1:26 and T � = 3:5 (solid line). The coordination number
z is de�ned as the number of particles within a cuto�-distance qc = 1:5�.
For comparison we also give the coordination number pro�le for a planar
interface (dotted curve), which is shifted in such a way that its equimolar
dividing surface coincides with that of the cluster, which is indicated by
the vertical line at Re.

core is that of the thermodynamically most stable phase, but that the core is \wetted"
by a shell with a structure characteristic for the smaller clusters. We have therefore
examined whether in the present case we also �nd traces of the tendency to form chains
at the surface of the larger, collapsed, clusters.

A visual inspection (see Fig. 8.4) of these clusters suggests that loops of dipolar
chains stick out of the surface (leading to a positive value of �2, see Fig. 8.6). In
order to quantify this behavior, we have computed the radial pro�le of the coordination
number for a cluster of around 300 particles. This is shown in Fig. 8.8. It is seen that
the coordination number smoothly approaches a value of two at the vapor side of the
interface. Such behavior is expected if the particles on the vapor side of the interface
belong to chains. For comparison, we have also shown in Fig. 8.8 the coordination
number pro�le for the planar interface. As the number density in the vapor is extremely
low, smaller than 1 � 10�3��3, it was not possible to get accurate statistics beyond
r = 6:75�. However, it is clearly seen that at the vapor side of the planar interface the
coordination number drops below two. Hence, the planar interface is smoother than the
interface of the clusters. Also an inspection of the density pro�les (see Fig. 8.7) shows
that the planar interface is sharper than the interface of a collapsed cluster of around
300 particles{the width of the interface of the cluster is some 25% larger. Most likely,
the planar interface is sharper because the stronger dispersion interactions with the bulk
causes the dipole chains to adsorb.
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8.4.4 Comparison with classical nucleation theory

In classical nucleation theory (CNT) the excess free of a cluster as a function of its size
is given by

��
(n) = �

"�
36�

�2l

�1=3


n2=3 ���n

#
: (8.28)

where �l is the density of the bulk liquid (which is assumed to be incompressible),

 is the surface tension of a planar vapor-liquid interface at coexistence, and �� =
�v(Pv)� �l(Pv) is the di�erence in chemical potential between a bulk liquid and a bulk
vapor, both at the imposed pressure Pv.

The prediction of classical nucleation theory for the height of the nucleation barrier
and the size of the critical nucleus can be obtained by taking the derivative of Eq. (8.28)
with respect to the cluster size n. We then �nd for the height of the barrier

��
� = �
16�
3

3�2l��
2
; (8.29)

and for the size of the critical nucleus

n� =
32�
3

3�2l��
3
: (8.30)

In order to compare our simulation results with classical nucleation theory we computed

 by the procedure outlined in section 8.3.3. We found 
 = 1:34 � 0:07�=�2. As the
density in the vapor is much lower than the density in the liquid, the �(P ) curve of the
vapor phase is much steeper than that of the liquid. We therefore made the common
assumption that the di�erence in chemical potential can be approximated by �� =
�v(Pv)��l(Pv) ' �v(Pv)��coex. The chemical potential at coexistence was determined
using the method discussed in section 8.3.2 and was found to be �coex = �26:82� 0:02�.
The density of the liquid at this chemical potential is �l = 0:78� 0:01��3.

Let us now discuss in more detail the basic assumptions of classical nucleation theory
that lead to Eqs. (8.28){(8.30). First of all, it is assumed that the nuclei behave like
small droplets of bulk liquid that are spherical. As discussed previously, the larger
nuclei, comprising more than approximately 200 particles, are quite spherical. However,
the smaller clusters, that initiate the nucleation process in this system, are not compact,
spherical objects, but chain-like aggregates. As a consequence, the variation in free
energy with cluster size is not as predicted by classical nucleation theory. We note that
if the clusters were perfectly rigid chains, the variation in free energy with cluster size
would be linear. Indeed, as can be seen from Fig. 8.2, we �nd that after n � 5 the
increase in cluster free energy is very linear with its size. The barrier shape predicted
by classical nucleation theory (see Eq. (8.28)) is only recovered after the clusters have
collapsed.

The linear regime in the size dependence of the cluster free energy has a remark-
able consequence for the dependence of the critical nucleus size on supersaturation (see
Fig. 8.9b). When the supersaturation is increased, the height of the nucleation bar-
rier and the critical nucleus size decrease. However, at a supersaturation of S = 1:8
(1=(���)3 = 5:25), the critical clusters have reached a size at which the variation in
free energy with cluster size is linear. At this point, the top of the barrier is 
at, and
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Figure 8.9 Comparison of the simulation results (open circles) with
classical nucleation theory (straight solid line) for a Stockmayer system at
S = 1:26 and T � = 3:5: (a) nucleation barrier; (b) size of the critical
cluster.

a small increase in the supersaturation leads to a jump in the critical cluster size (see
inset of Fig. 8.9b).

It is thus clear that at large supersaturation, where the critical nuclei are relatively
small, the polymer-like character of the clusters leads to strongly non-classical nucleation
behavior. However, even for the collapsed globule-like nuclei, the simulation results show
large deviations from classical nucleation theory. This can be seen from Fig. 8.9. This
�gure shows the comparison between the simulation results and the predictions of clas-
sical nucleation theory for the height of the barrier and the critical nucleus size. Clearly,
the theory underestimates both the size of the critical nucleus and the height of the
nucleation barrier. As the variation in the nucleation rate is dominated by the varia-
tion in the barrier height, our results are in qualitative agreement with the experiments
on strongly polar 
uids [33, 34], in which it was found that classical nucleation theory
seriously overestimates the nucleation rate.

We would like to understand the origin of this discrepancy between classical nu-
cleation theory and the simulations. As mentioned, the larger, collapsed nuclei are
spherical. Also the assumption of classical nucleation theory that the cores of these nu-
clei show bulk liquid behavior seems to be justi�ed, as the density and the orientational
order parameter �2 approach bulk liquid values in the center of the droplets.

However, CNT neglects the variation of surface tension with droplet size. In fact,
McGraw and Laaksonen [13] showed that the interfacial curvature free energy can cause
a signi�cant correction to the barrier height as predicted by classical nucleation theory.
They derived relations [12, 13] for the barrier height and the critical nucleus size, that
could provide an explanation for the discrepancy between experiment and classical nu-
cleation theory for a variety of nonpolar and weakly polar 
uids [130]. In particular,
McGraw and Laaksonen [13] showed that if CNT correctly predicts the size of the crit-
ical nucleus, then the curvature correction yields a constant o�set between the actual
barrier height and the height of the barrier as predicted by classical nucleation theory.
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It is interesting to note that this behavior has been observed in both a density func-
tional study [13, 12] and in our computer simulation study of gas-liquid nucleation in
the Lennard-Jones system (see chapter 5). It was found that for a wide range of cluster
sizes CNT gives a correct prediction of the critical nucleus size and that the deviation
from the predicted barrier height is constant, i.e. independent of cluster size.

However, for this polar system, the displacement between the measured barrier height
and the predicted height of the barrier is not constant, as can be seen from Fig. 8.9.
More clearly, the critical nucleus size is not correctly predicted by CNT. Hence, in
contrast to the (non-polar) Lennard-Jones 
uid, the scaling relations are not obeyed for
this highly polar 
uid. A possible explanation could be that, whereas the interface of a
Lennard-Jones critical nucleus is nearly indistinguishable from the planar interface, for
this system the structure of the interface of the critical clusters is still markedly di�erent
from the planar interface.

Finally, it is interesting to consider the implications of our �ndings for the nucleation
behavior of polar 
uids without attractive dispersion forces. For these 
uids, the ten-
dency to form chains will be even more pronounced and the point at which the clusters
collapse will shift to larger cluster sizes. This means that condensation will be preceded
(and possibly preempted) by the growth of very large, polymer-like clusters. It is con-
ceivable that the \gel"-like phase observed in the simulations of Refs. [36, 152] is, in
fact, an interpenetrating network of uncollapsed dipolar chain clusters.

Appendix Pressure tensor

For pair-wise additive potentials, such as the Lennard-Jones potential, the �� element
of the pressure tensor can be evaluated from the virial equation for the pressure

P�� = �kBT +
1

V

NX
i<j

rij�fij�; (8.31)

where rij is the vector between i and j and fij�(rij;�i;�j) = �@v(rij ;�i
;�

j
)

@rij�
is the inter-

molecular force. However, in the Ewald sum, that contains a real space contribution and
a reciprocal space contribution, the pressure tensor cannot be written as in Eq. 8.31.

The electrostatic energy Udip of the dipolar interactions in the Stockmayer system,
embedded in a material with in�nite dielectric constant, is [159]

Udip =
1

2

NX
i6=j

(�i � �j)B(rij)� (�i � rij)(�j � rij)C(rij)�
2�3

3
p
�

NX
i=1

�2i +

2�

V

X
k6=0

Q(k)M(k)M(�k);
(8.32)

where � is the convergence parameter,

B(r) �
�
2�rp
�
exp(��2r2) + erfc(�r)

��
r3; (8.33)

C(r) �
�
2�rp
�
(3 + 2�2r2) exp(��2r2) + 3erfc(�r)

��
r5; (8.34)
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with erfc the complementary error function, and

Q(k) � exp(�k2=4�2)

k2
; (8.35)

and

M(k) �
NX
i=1

i(�i � k) exp(ik � ri): (8.36)

Here k are the reciprocal lattice vectors, which are de�ned as

k � (2�l=Lx; 2�m=Ly; 2�n=Lz); (8.37)

where l, m and n are integers.
The �rst two terms in Eq. (8.32) are the real-space contributions, the third term

is the so-called self term expressing the self-energy of the dipoles, and the last term
in Eq. (8.32) is the reciprocal space contribution. The real-space contribution to the
pressure tensor is obtained by evaluating the second term on the right hand side of
Eq. (8.31)

P�� =
1

2V

NX
i6=j

rij�fC(rij)[rij�(�i � �j) + �i�(�j � rij) + �j�(�i � rij)] +

C 0(rij)

rij
rij�(�i � rij)(�j � rij)g;

(8.38)

where

C 0(r) � @C

@r
= �

�
15erfc(�r) +

2�rp
�
(15 + 10�2r2 + 4�4r4) exp(��2r2)

��
r6:

(8.39)

In order to calculate the reciprocal space contribution to the pressure tensor we have
followed the procedure of Nos�e and Klein [164]. In this procedure the pressure tensor is
obtained from the variation in potential energy with a deformation of the system. The
reciprocal space contribution to the pressure tensor is

P�� =
2�

V 2

X
k6=0

Q(k)fM(k)M(�k)
�
��� � 2k�k�

k2
� k�k�

2�2

�
+

M(k)V��(�k) +M(�k)V��(k)g;
(8.40)

where V��(k) is given by

V��(k) =

NX
i=1

i�i�k� exp(ik � ri): (8.41)

A similar expression has been independently derived by Heyes [165], although in Ref. [165]
a minus sign in the second exponential on the right hand side of Eq. (34) is missing.

We found that the above expressions for the pressure tensor could be used as a
convergence test for the Ewald-summation. From the de�nition of the dipolar interaction
potential (see Eq. (8.1)) and from the de�nition of the virial equation for the pressure
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(see Eq. (8.31)) it can be veri�ed that for dipolar interactions the interaction energy is
equal to the virial, i.e.

NX
i<j

v(rij;�i;�j) =
1

3

NX
i<j

rij � f(rij;�i;�j): (8.42)

Hence, the virial and thus the pressure can be directly obtained from the potential
energy. On the other hand, the virial should also given by the trace of the stress tensor,
i.e. by the sum of the traces of the stress tensors in Eqs. (8.38) and (8.40). In Fig. 8.10 we
compare the two ways of obtaining the pressure. It is seen that the pressures obtained via
the two routes nicely converge to the same value after jkmax

x j = jkmax
y j = 1=4jkmax

z j = 7.

2 4 6 8 10
|kx|=ky|=1/4|kz|
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Figure 8.10 Convergence test for the Ewald summation. Indicated
are two ways of obtaining the pressure, as a function of the number of
reciprocal lattice vectors. The line with the open circles gives the pressure
obtained from the potential energy. The dotted curve with the square
symbol gives the pressure obtained via the trace of the pressure tensor,
i.e. via Eq. (8.38) and Eq. (8.40). It is seen that both routes give the same
pressure after jkmax

x j = jkmax
y j = 1=4jkmax

z j = 7.





9 Enhancement of Protein

Crystal Nucleation by Critical

Density Fluctuations

Numerical simulations of homogeneous crystal nucleation using a model for globular
proteins with short range attractive interactions show that the presence of a metastable

uid-
uid critical point drastically changes the pathway for the formation of a crystal
nucleus. Close to this critical point, the free-energy barrier for crystal nucleation is
strongly reduced and hence the crystal nucleation rate increases by many orders of mag-
nitude. As the location of the metastable critical point can be controlled by changing the
composition of the solvent, the present work suggests a systematic approach to promote
protein crystallization.

9.1 Introduction

Due to rapid developments in biotechnology, we are witnessing an explosive growth in
the number of proteins that can be isolated. However, the determination of the three-
dimensional structures of proteins by X-ray crystallography, remains a time-consuming
process. One bottleneck is the di�culty of growing good protein crystals. In his book on
this subject, McPherson [166] wrote \The problem of crystallization is less approachable
from a classical analytical standpoint, contains a substantial component of trial and
error, and draws more from the collective experience of the past century. [� � � ] It is much
like prospecting for gold". The experiments clearly indicate that the success of protein
crystallization depends sensitively on the physical conditions of the initial solution [166{
168]. It is therefore crucial to understand the physical factors that determine whether a
given solution is likely to produce good crystals.

Recent studies have shown that not just the strength, but also the range of the
interactions between protein molecules is of crucial importance for crystal nucleation. In
1994, George and Wilson [169] demonstrated that the success of protein crystallization
appears to correlate with the value of B2, the second osmotic virial coe�cient of the
protein solution.

The second virial coe�cient describes the lowest order correction to the van 't Ho�
law for the osmotic pressure �:

�

�kBT
= 1 +B2�+ (terms of order �2) (9.1)

where � is the number density of the dissolved molecules, kB is Boltzmann's constant,
and T is the absolute temperature. For macromolecules, B2 can be determined from
static light scattering experiments [170]. Its value depends on the e�ective interaction
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between a pair of macromolecules in solution [171]:

B2 = 2�

Z
r2dr[1� exp[��v(r)]] (9.2)

where � � 1=kBT and v(r) is the interaction energy of a pair of molecules at distance r.
George and Wilson measured B2 for a number of proteins in various solvents. They

found that for those solvent conditions that are known to promote crystallization, B2

was restricted to a narrow range of small negative values. For large positive values of
B2 crystallization did not occur at all, whereas for large negative values of B2 protein
aggregation, rather than crystallization, took place. This correlation has been extended
to over 20 distinct proteins with a wide variety of crystal structures and interaction
potentials [37].

Recently, Rosenbaum, Zamora and Zukoski [37, 38] established a link between the
work of George and Wilson and a computer-simulation study by Hagen and Frenkel [172],
who studied the e�ect of the range of intermolecular attractions on the phase diagram
of spherical colloids in colloid-polymer mixtures. In colloid-polymer mixtures, the range
of interaction between the colloids can be controlled by tuning the radius-of-gyration of
the polymer. Since the theoretical work of Gast, Hall and Russel [173, 174], it is known
that the range of attraction between spherical colloids has a drastic e�ect on the overall
appearance of the phase diagram. If the range of attraction is long in comparison to
the diameter of the colloids, the phase diagram of the colloidal suspension resembles
that of an atomic substance, such as argon: depending on the temperature and density,
the colloids can occur in three phases (Fig.1A) { a dilute colloidal 
uid (analogous to
the vapor phase), a dense colloidal 
uid (analogous to the liquid phase), and a colloidal
crystal phase. However, when the range of the attraction is reduced, the 
uid-
uid
critical point moves towards the triple point, where the solid coexists with the dilute and
dense 
uid phases. At some point, the critical point and the triple point will coalesce. If
the range of attraction is made even shorter (less than some 25% of the colloid diameter),
only two stable phases remain: one 
uid and one solid (Fig.1B). However, the 
uid-
uid
coexistence curve survives in the metastable regime below the 
uid-solid coexistence
curve (Fig.1B). This is indeed found in experiments [175{178] and simulations [172].

Why is this relevant for protein crystallization? First of all, globular proteins in
solution often have short-ranged attractive interactions. In fact, a series of studies [179{
182] show that the phase diagram of a wide variety of proteins is of the kind shown in
Fig.1B. Moreover, the range of the e�ective interactions between proteins can be changed
by the addition of non-adsorbing polymer (such as poly-ethylene glycol) [176, 183] or by
changing the pH or salt concentration of the solvent [166, 167].

The interesting observation presented by Rosenbaum, Zamora and Zukoski [37, 38]
is that the conditions under which a large number of globular proteins can be made to
crystallize, map onto a narrow temperature range, or, more precisely, a narrow range
in the value of the osmotic second virial coe�cient, of the computed 
uid-solid coex-
istence curve of colloids with short-ranged attraction [172]. If the temperature is too
high, crystallization is hardly observed at all, whereas if the temperature is too low,
amorphous precipitation rather than crystallization occurs. Only in a narrow window
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around the metastable critical point, high-quality crystals can be formed. Several au-
thors had already noted that a similar crystallization window exists for colloidal suspen-
sions [184, 185]. The aim of the present study is to use simulation to gain insight into
the physical mechanism responsible for the enhanced crystal nucleation. We show that
the presence of a metastable 
uid-
uid critical point is essential.

The rate-limiting step in crystal nucleation is the crossing of the free-energy barrier.
We have computed the free-energy barrier for homogeneous crystal nucleation for a
model \globular" protein. We show that in the \window" where successful protein
crystallization is observed, the free-energy barrier for homogeneous crystal nucleation is
anomalously low. Moreover, our simulations shed light on the mechanism responsible
for the easier crystal nucleation in this window{the formation of a critical nucleus is
assisted by the presence of strong density 
uctuations in the vicinity of the metastable

uid-
uid critical point.

The rest of the chapter is organized is as follows. In the next section we �rst brie
y
describe the model and its phase-diagram. We then present the simulation techniques
to compute the free-energy barriers in section 9.3 and we end with a discussion of the
results.

9.2 Model

Rosenbaum, Zamora, and Zukoski [37, 38] argued that for proteins the range of the
interaction potential is short compared to their size. Hence, proteins and other globular
macromolecules should fall into a class of materials where only 
uid and crystal equilib-
rium will be observed. To test this conjecture, Rosenbaum et al. [37, 38] examined the
solubility behavior for a number of globular proteins in terms of two experimentally ac-
cessible parameters, the density � and the sticky sphere parameter � . The sticky sphere
parameter � is related to the second virial coe�cient of the osmotic pressure, B2, and is
de�ned as

� =
1

4(1� 3B2=2��3)
=

1

4(1�B2=B2;HS)
; (9.3)

where B2;HS is the second virial coe�cient for hard-spheres of diameter �. As mentioned,
B2 can be measured by static light scattering.

Rosenbaum, Zamora, and Zukoski [37, 38] found that a variety of globular proteins
display a common solubility curve when compared on equal footing (i.e. on the basis
of � and �). This indicates that the solubility boundary is only weakly dependent on
particle type and suggests that the phase-boundaries are insensitive to the details of the
interaction potential. Moreover, they showed that the crystal-
uid phase boundaries
of the proteins in solution can be mapped onto the 
uid-solid sublimation curve of the
hard-core Yukawa potential [172], provided that �=�, the particle diameter scaled by the
Yukawa screening length, is larger than seven. For these values of �=�, the range of the
attractive part of the Yukawa potential is less than one-sixth of the hard-core diameter
and the liquid-vapor critical point has become metastable. This clearly shows that the
phase-behavior of globular macromolecules such as proteins can indeed be explained as
arising from attractive interactions which have a range that is small compared to the
particle diameter.
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Figure 9.1 The sticky-sphere parameter � , de�ned in Eq. (9.3) for the
modi�ed Lennard-Jones potential with � = 50 (see Eq. (9.4)) and the
hard-core Yukawa potential with �=� = 7, as a function of the temperature
T . Tc is the temperature of the metastable liquid-vapor critical point in
the modi�ed Lennard-Jones system.

As the details of the interaction potential are of minor importance, we have some
freedom in choosing an interaction potential for our model. A natural choice would be the
hard-core Yukawa potential. However, this interaction potential shows a discontinuity
in the derivative at r = �, which makes it not very convenient for Molecular Dynamics
(MD). For the interaction between particles we therefore chose a suitable generalization
of the Lennard-Jones potential:

v(r) =

(
1 (r < �)
4�
�2

�
1

[(r=�)2�1]6
� � 1

[(r=�)2�1]3

�
(r � �)

(9.4)

where � denotes the hard-core diameter of the particles and � the well depth. The width
of the attractive well can be adjusted by varying the parameter �. The value of � was
tuned in such a way that the parameter � equals that of the hard-core Yukawa potential
for �=� = 7 at the (metastable) liquid-vapor critical point. The value of B2 is given by
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Eq. (9.2) and B2;HS for the modi�ed Lennard-Jones potential in Eq. (9.4) is given by

B2;HS =
2

3
��3 + 2�

Z rmin

�

r2dr[1� exp[��v12(r)]]; (9.5)

where rmin is the minimum of the potential in Eq. (9.4) and v12(r) is the repulsive part
of the modi�ed Lennard-Jones potential:

v12(r) =
4�

�2

1

[(r=�)2 � 1]6
: (9.6)

We found that for � = 50 the � -parameter of the modi�ed Lennard-Jones potential was
equal to that of the hard-core Yukawa potential with �=� = 7 at the metastable liquid-
vapor critical point. But we would like to mention that not only at the critical point
of the Yukawa model the sticky-sphere parameters are equal, but over a wide ranges of
temperatures, which is shown in Fig. 9.1.

In order to map out the phase-diagram for our model protein we have performed
Gibbs-ensemble Monte Carlo simulations to determine the liquid-vapor coexistence
curve [129]. The solid-
uid coexistence line was computed using the procedure devel-
oped by Meijer and El Azhar [186], which combines elements of the Clausius-Clapeyron
integration technique with free-energy di�erence calculations. In all simulations, the
interaction potential was truncated and shifted at rc = 2:0�. In what follows, we use
reduced units, such that � is the unit of energy and � is the unit of length.

The Gibbs-ensemble simulations were performed for a system size of N = 216 and
N = 512 particles. As the temperature is relatively low, the particles are rather \sticky"
giving rise to high-frequency, low-amplitude oscillations superimposed on low-frequency,
high-amplitude 
uctuations of the densities in both boxes. We therefore had to perform
extensive simulations, in order to obtain accurate statistics. The number of equilibration
cycles was at least 1 � 105, and the number of production cycles was more than 1 �
106. One Gibbs-ensemble cycle consisted, on average, of one trial displacement of every
particle, one attempt per particle to exchange it between the two simulation boxes, and

Table 9.1 Coexistence data for the (metastable) vapor-liquid coexis-
tence. T is the reduced temperature, T=Tc is the reduced temperature
scaled by the critical temperature Tc, � is the density and u is the poten-
tial energy per particle. The number in brackets denotes the accuracy of
the last digit. The \-" indicates that the boxes changed identity during
the simulations.

Vapor phase Liquid phase
T T=Tc �v Pv uv �l Pl ul

0.357 0.854 0.023 (7) 0.007 (1) -0.17 (5) 0.68 (1) 0.01 (1) -3.12 (5)
0.364 0.871 0.028 (8) 0.009 (2) -0.19 (7) 0.66 (1) 0.00 (1) -3.04 (7)
0.370 0.885 0.04 (1) 0.010 (2) -0.24 (8) 0.65 (1) 0.01 (1) -2.94 (8)
0.377 0.902 0.04 (1) 0.013 (3) -0.29 (9) 0.63 (2) 0.01 (1) -2.81 (8)
0.385 0.921 0.06 (1) 0.016 (3) -0.4 (1) 0.60 (2) 0.02 (1) -2.7 (1)
0.392 0.938 0.08 (1) 0.020 (3) -0.5 (1) 0.57 (3) 0.02 (1) -2.5 (1)
0.400 0.957 0.11 (3) 0.03 (1) - 0.53 (4) 0.03 (1) -
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Table 9.2 Coexistence data for the 
uid-solid coexistence curve; T is
the reduced temperature, T=Tc is the reduced temperature scaled with
the critical temperature Tc, � is the density, u is the potential energy
per particle, and P is the coexistence pressure. The number in brackets
denotes the accuracy of the last digit.

Fluid phase Solid phase
T T=Tc �f uf �s us P

6.000 14.354 0.687 (5) -0.80 (4) 0.764 (3) -1.57 (4) 46.71 (3)
1.500 3.589 0.657 (6) -2.23 (3) 0.781 (5) -3.26 (6) 8.44 (2)
0.900 2.153 0.629 (9) -2.29 (5) 0.824 (4) -4.07 (7) 3.271 (3)
0.650 1.555 0.567 (7) -2.07 (4) 0.853 (1) -4.65 (2) 1.067 (7)
0.580 1.388 0.508 (6) -1.84 (3) 0.861 -4.83 (1) 0.520
0.545 1.304 0.43 (1) -1.57 (4) 0.865 -4.92 (2) 0.283
0.530 1.268 0.391 (9) -1.43 (4) 0.867 -4.96 (1) 0.199
0.515 1.232 0.32 (2) -1.18 (7) 0.868 -4.99 (2) 0.131
0.500 1.196 0.22 (2) -0.87 (6) 0.870 -5.04 (1) 0.0831
0.485 1.160 0.140 (8) -0.60 (4) 0.872 -5.07 (1) 0.0518
0.470 1.124 0.085 (4) -0.39 (2) 0.873 -5.11 (2) 0.0329
0.455 1.089 0.052 (2) -0.259 (8) 0.875 -5.16 (1) 0.0207
0.440 1.053 0.0322 (9) -0.173 (7) 0.877 -5.19 0.0129
0.420 1.005 0.0169 (2) -0.098 (2) 0.879 -5.23 0.0067
0.400 0.957 0.0086 -0.055 (1) 0.881 -5.29 0.0033
0.370 0.885 0.0028 -0.021 (1) 0.884 -5.36 0.0010
0.340 0.813 0.0008 -0.007 0.887 -5.43 0.0003
0.310 0.742 0.0002 -0.002 0.889 -5.49 0.00005

two attempts to exchange volume between the two boxes. To check that the liquid
and vapor phases had reached equilibrium, we veri�ed that both the chemical potential
and the pressure in the \liquid" and \vapor" box were equal. The coexistence data is
collected in Table 9.1.

The integration scheme to trace the 
uid-solid coexistence curve requires that one
set of points on this curve is already known. The starting point for the simulations was
chosen to be the in�nite temperature limit � ! 0, where the \protein" model reduces
to the hard-sphere model for which the densities of the coexisting phases, as well as
the coexistence pressure, are known. The size of the system was N = 108 particles.
Table 9.2 shows the coexistence data.

From the computed densities of the coexisting liquid and vapor phases, the critical
point can be estimated by using the law of rectilinear diameter [123] and assuming that
the shape of the binodal is described by a power law with the 3D-Ising critical exponent
� = 0:32. The critical point is Tc = 0:42�0:01 and the critical density is �c = 0:30�0:02.
The pressure at the critical point is estimated to be Pc = 0:041� 0:007.

Combing the data of the Gibbs-ensemble simulations and the integration scheme for
the 
uid-solid coexistence curve, we obtain the phase diagram shown in Fig. 9.2. We
see that our model globular protein reproduces the phase behavior of protein solutions
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Figure 9.2 (A): Typical phase diagram of a molecular substance with
a relatively long-ranged attractive interaction. The phase diagram shown
here corresponds to the Lennard-Jones 6{12 potential (v(r) = 4�[(�=r)12�
(�=r)6] { solid curve in insert) [79]. The dashed line indicates the triple
point. (B): Typical phase diagram of colloids with short-ranged attraction.
The phase diagram was computed for the potential given in Eq. 9.4 (solid
curve in insert), with � = 50. In both �gures, the temperature is expressed
in units of the critical temperature Tc, while the number density is given in
units ��3, where �, the e�ective diameter of the particles is de�ned in the
expression for v(r). The diamonds indicate the 
uid-
uid critical points.
In both �gures, the solid lines indicate the equilibrium coexistence curves.
The dashed curve in B indicates the metastable 
uid-
uid coexistence.
Crystal-nucleation barriers were computed for the points denoted by open
squares.

studied in [179{182]. The 
uid-
uid coexistence curve is located in the metastable
region some 20 % below the equilibrium crystallization curve.

It is clear that the potential in Eq. (9.4) provides a simpli�ed description of the
e�ective interaction between real proteins in solution: it accounts both for direct and
for solvent-induced interactions between the globular proteins. However, we would like
to stress that we can map this phase-diagram, by the procedure described above, onto
the experimentally determined phase-diagrams for the proteins in solution studied by
Rosenbaum al. [37, 38].
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9.3 Free-energy landscape

Crystallization in real protein solutions may take days or weeks. In a simulation, it
takes even longer, because the volume that can be studied by simulations is orders of
magnitude smaller, and the probability of forming a crystal is decreased by the same
amount. Hence, we cannot use conventional molecular dynamics to study protein crystal
nucleation under realistic conditions.

But in chapter 4 we have seen how the umbrella sampling technique does allow for
the sampling of con�guration space near the top of the barrier and enables us to measure
of the free-energy of a nucleus as a function of its size. If the interaction between the
clusters can be neglected, the number Nn of clusters of size n is given by

Nn = Zn exp[��n]; (9.7)

where � is the imposed chemical potential and Zn is the partition function of an n-mer,
de�ned as

Zn =
V n3

�3nn!

Z
dr0

n�1
exp[��Wn(r

0n�1
)]: (9.8)

Here � is the thermal De Broglie wavelength and Wn is the potential of mean force. We
would like to mention that in order to arrive at this expression, we do not have to make
the assumption that the clusters are decoupled from the surrounding medium. We have
integrated out the coordinates of the solvent particles, and the e�ect of the surrounding
medium is adsorbed into the e�ective interactions between the cluster particles. This
is of particular importance for crystal nucleation, as the density di�erence between the
crystal and the surrounding liquid is so low that we cannot neglect the interactions
between cluster and solvent particles.

We do have to assume that we have a cluster criterion that enables us to assign
particles to clusters. The question now is: which particles constitute a crystalline cluster?
That is, what type of cluster criterion do we have to use?

The intuitive choice would be to use a crystallinity criterion. After all, we are
interested in the formation of a crystalline critical nucleus. However, as indicated in the
introduction, we expect that crystallization near the metastable critical point is strongly
in
uenced by critical density 
uctuations. We therefore used not only a crystallinity
criterion, but also a density criterion. For most of the simulations, we have used the
same density criterion as the one used in our study of homogeneous gas-liquid nucleation
in a Lennard-Jones system, see chapter 5. It is a criterion that enables us to identify
those particles that have a signi�cantly denser local environment than particles in the
remainder of the system. The local density of a particle is determined by the number
of particles within a spherical shell of radius qc = 1:5. If the number of neighbours
exceeds a certain threshold (in this case nine), then the particle is considered to be a
\high-density" particle.

For one point in the phase diagram for which we have computed the free-energy
barrier, at T = 2:23Tc, the density di�erence between the undercooled 
uid and the solid
is so small, that the respective distribution functions of the number of neighbours overlap
considerably. For this point, we followed a slightly di�erent procedure, which consists
of two steps. We �rst assign to every particle a label, either a one or a zero, depending
on whether or not the particle satis�es the local density criterion that it has more than
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Figure 9.3 Distribution function f of the number of neighbors, NCP�,
that satisfy the density criterion (see Text) for a liquid of density � = 0:66,
an (fcc) crystal at � = 0:83, and a liquid at � = 0:83 (T = 2:23Tc, pressures
P are indicated in �gure). It is seen that the distribution function for
the liquid phase of � = 0:62 exhibits little overlap with the distribution
functions of the other two phases. The threshold value for the density
criterion was taken to be nine.

eleven neighbours. We then consider a particle as a \high-density" particle when the
number of neighbours that satisfy this density criterion is larger than a threshold value
of nine. We illustrate the technique in Fig. 9.3, where we show the distribution functions
of the number of high-density neighbours for an undercooled liquid at a density � = 0:66,
an fcc-crystal at a density � = 0:83, and a (compressed) liquid at this density. It is seen
that the distribution function for the liquid of the lower density shows only small overlap
with the distribution functions of the other two phases. Hence, also for this region of
the phase diagram we have a well-de�ned criterion to identify the particles that have a
signi�cantly higher local density than the particles in the rest of the system.

After we have identi�ed the high-density particles in the system, we can assign them
to clusters. As before, we have applied the criterion that any two high-density particles
that are neighbours belong to the same cluster. The number of particles in the largest
cluster is denoted by N�.

Now that we have determined which particles belong the largest high-density cluster
(be it liquid or solidlike), we classify each particle in this cluster as either solidlike or
liquidlike. To this end, we have used the same crystallinity criterion as the one used
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in chapter 3 on homogeneous crystal-nucleation in a Lennard-Jones system. We denote
the number of solidlike particles in the cluster of N� high-density particles by Ncrys.

In our simulations, we determine the free-energy \landscape" of this cluster as a
function of the two coordinates N� and Ncrys by measuring the probability distribution
function P (N�; Ncrys):

��G(N�; Ncrys) � � ln[P (N�; Ncrys)]: (9.9)

In order to sample all values of N� and Ncrys with equal accuracy, we have employed the
umbrella sampling technique [26]. The form of the biasing potential W (N�; Ncrys) was
taken to be

W (N�; Ncrys) =
1

2
kN�

(N� �N�;0)
2 +

1

2
kNcrys

(Ncrys �Ncrys;o)
2: (9.10)

The umbrella sampling method was embedded in a hybrid MD-MC scheme. In this
scheme, molecular dynamics trajectories are used to generate collective trial Monte Carlo
moves. To be more speci�c, each Monte Carlo move consists of three steps:

1. New particle velocities are sampled from a Maxwellian distribution;

2. An MD-trajectory is performed, starting with the current con�guration and the
new velocities. In principle, we could add the biasing potential to the Hamiltonian
of the system, and generate the MD-trajectory according to this extended Hamil-
tonian. It would require that the forces associated with the biasing potential have
to be computed. However, the nice feature of the hybrid MD-MC scheme is that
we do not have to do so. We can simply perform a trajectory without the biasing
potential and correct for it in the next step.

3. We accept or reject the new con�guration with an acceptance probability

Pacc = Min [1; exp[��(�H +�W (N�; Ncrys))]] ; (9.11)

where �H is the change in the Hamiltonian of the system (without the biasing
potential) and �W is the change in the biasing potential. We have included the
term �W (N�; Ncrys) to ensure that con�guration space is sampled according to
the extended Hamiltonian (i.e., with the biasing potential). If the trajectory is
rejected, the particle coordinates are set back to their original values.

In order to generate the isothermal-isobaric (NPT ) ensemble, the MD-trajectory
is performed in the isoenthalpic-isobaric (NPH) ensemble. For this, we have used the
equations of motion of Andersen [138]. In order for the scheme to satisfy detailed balance,
the MD-algorithm should be time reversible. Moreover, it should be area preserving.
In the Appendix we give our algorithm, which satis�es both conditions; it is derived
by a Trotter factorization of the Liouville propagator via the procedure proposed by
Tuckerman, Berne and Martyna [140].

The size of the system was determined by the requirement that the largest nucleus
in the system should not \feel" its periodic neighbours. For most of the simulations a
system size of N = 500 particles was su�cient. In these simulations, we applied cubic
periodic boundary conditions. For the simulation at T = 2:23Tc, the density of the
liquid surrounding the nucleus is so large that we had to use a much larger system, of
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N = 3000 particles, although truncated octahedral periodic boundary conditions were
applied to reduce the number of particles as much as possible. A neighbour list was used
to speed up the simulations.

To map out a two-dimensional free-energy landscape is computationally expensive:
the number of umbrella-windows was between 100 and 150. Typically, a simulation in
a window consisted of an equilibration period of 10000-25000 collective Monte Carlo
moves, followed by a production run of 25000 to 50000 MC-moves. The length of one
MD-trajectory, corresponding to one collective MC-move, depended on the density of the
surrounding medium: from 10 timesteps in the simulations of crystal nucleation from the
high-density liquid, to 100 timesteps for crystal nucleation from the vapor. The hybrid
MD-MC scheme allows for a relatively large timestep as the energy does not have to be
conserved along the trajectory. On the other hand, the larger the time-step, the lower
the probability with which the trajectory will be accepted. Moreover, the short range of
the potential demands a relatively small timestep. We found that a time-step of 0:0025�
was optimal.

9.4 Results

We studied the free-energy barrier for four di�erent points in the phase diagram: one
well above the metastable critical point (T = 2:23Tc), one at Tc, and the remaining
two at 0:89Tc and 1:09Tc. In order to make a comparison on equal footing, we chose
the degree of supercooling such that classical nucleation theory would predict the same
value for the height of the nucleation barrier for our all systems. In classical nucleation
theory the barrier height �G� is given by

�G�

kBT
=

16�
3

3kBT�2��2
; (9.12)

where 
 is the free-energy density per unit area of the solid-liquid interface, � is the
number density of the solid phase, and �� is the di�erence in chemical potential between
the 
uid and the solid. It is the thermodynamic driving force for crystallization.

As the solid is nearly incompressible, we can take for the density of the \supercooled"
solid phase, the density at coexistence, which we have computed by the integration
scheme discussed in section 9.2. The di�erence in chemical potential was approximated
by

�� � �h
Tm � T

Tm
; (9.13)

where �h is the enthalpy change per particle on freezing at coexistence and Tm is
the coexistence temperature. The data for �h could also easily be obtained from the
integration scheme. To compute the surface free-energy for a solid-liquid interface is
much harder and we have not tried to do so. Rather, we have used Turnbull's empirical
rule which states that 
 is proportional to �h [6]. The constant of proportionality
between 
 and �h varies from one substance to the next, and is not known a priori.
Therefore, we do not know the absolute value of the prediction of classical nucleation
theory for the barrier height, but we do know that it is constant for the simulation
points. The parameters characterizing the points studied in the simulation have been
collected in Table 9.3.
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T=Tc Tm=Tc (Tm � T )=Tm �H(Tm)=(kBTm) �cr(Tm) �G�=kBT
0.89 1.04 0.136 -12.59 0.877 75
1.0 1.14 0.123 -10.35 0.872 53
1.09 1.22 0.109 -8.153 0.869 83
2.23 2.39 0.069 -2.996 0.814 128

Table 9.3 Parameters characterizing the simulations described in the
text. Meaning of symbols { T : absolute temperature, Tc: critical tem-
perature. Tm: melting temperature. �H(Tm)=(kBTm): ratio of solid-
uid
enthalpy di�erence and thermal energy at coexistence. �cr(Tm): density
of the crystal phase at coexistence (in units ��3). �G�=kBT : nucleation
barrier height divided by kBT .

For all points, we studied the free-energy landscape and the lowest free-energy path
for the formation of the critical nucleus. The free-energy landscape was determined as a
function of N� and Ncrys. In a crystal nucleation event, we start from the homogeneous
liquid (N� � Ncrys � 0). When a nucleus is formed, the free energy increases, until
it reaches a saddle-point, corresponding to the critical nucleus. From there on, the
nucleus will grown spontaneously. As explained in detail in section 9.3, the structure
of the nucleus that is formed can be characterized by N� and Ncrys. If a high-density
liquidlike droplet forms in the system, we expect N� to become large, while Ncrys remains
essentially zero. In contrast, for a normal crystallite, we expect that N� is proportional
to Ncrys.

Fig. 9.4 shows the free-energy landscape for T = 0:89Tc and T = Tc. The free-energy
landscapes for the other two points are qualitatively similar to the one for T = 0:89Tc
and will not be shown here. We �nd that away from Tc (both above and below), the
path of lowest free energy is one where the increase in N� is proportional to the increase
in Ncrys (Fig.2A). Such behavior is expected if the incipient nucleus is simply a small
crystallite. However, around Tc, critical density 
uctuations lead to a striking change in
the free-energy landscape (Fig.2B). First, the route to the critical nucleus leads through
a region where N� increases while Ncrys is still essentially zero. In other words: the �rst
step towards the critical nucleus is the formation of a liquidlike droplet. Then, beyond
a certain critical size, the increase in N� is proportional to Ncrys, that is, a crystalline
nucleus forms inside the liquidlike droplet.

Clearly, the presence of large density 
uctuations close to a 
uid-
uid critical point
has a pronounced e�ect on the route to crystal nucleation. But, more importantly, the
nucleation barrier close to Tc is much lower than at either higher or lower temperatures
(Fig. 9.5 and Table 9.3). The observed reduction in �G� near Tc by some 30kBT cor-
responds to an increase in nucleation rate by a factor 1013. One could interpret this
observation as follows: near the 
uid-
uid critical point, the wetting of the crystal nu-
cleus by a liquidlike layer results in a value of the interfacial free-energy 
, and therefore
of the barrier height �G�, that is much lower than would be estimated on the basis of
Turnbull's rule. In fact, in a recent paper, Haas and Drenth [187] note that the experi-
mentally determined interfacial free energy of small protein crystals [188, 189] is much
smaller than the value predicted on the basis of their version of Turnbull's rule.
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Finally, let us consider the implications of this reduction of the crystal nucleation
barrier near Tc. An alternative way to lower the crystal nucleation barrier would be
to quench the solution deeper into the metastable region below the solid-liquid coexis-
tence curve. However, such deep quenches often result in the formation of amorphous
aggregates [37, 38, 169, 176{178, 182]. Moreover, in a deep quench, the thermodynamic

Figure 9.4 Contour plots of the free-energy landscape along the path
from the metastable 
uid to the critical crystal nucleus, for our system of
spherical particles with short-ranged attraction. The curves of constant
free energy are drawn as a function of N� and Ncrys (see text) and are
separated by 5kBT . (A): The free energy landscape well below the critical
temperature (T=Tc = 0:89). The lowest free-energy path to the critical
nucleus is indicated by a dashed curve. This curve corresponds to the
formation and growth of a highly crystalline cluster. (B): As (A), but
for T = Tc. In this case, the free-energy valley (dashed curve) �rst runs
parallel to the N� axis (formation of a liquidlike droplet), and then moves
towards a structure with a higher crystallinity (crystallite embedded in a
liquidlike droplet). The free energy barrier for this route is much lower
than the one in (A).
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Figure 9.5 Variation of the free-energy barrier for homogeneous crystal
nucleation, as a function of T=Tc, in the vicinity of the critical temperature.
The solid curve is a guide to the eye. The nucleation barrier at T = 2:23Tc
is 128kBT and is not shown in this �gure. If Turnbull's phenomenological
rule for 
 would hold [6], Eq. (9.12) would predict a constant nucleation
barrier. But the simulations show that the nucleation barrier goes through
a minimum around the metastable critical point (see text).

driving force for crystallization (�liq � �cryst) is also enhanced. As a consequence, the
crystallites that nucleate will grow rapidly and far from perfectly [167]. In contrast,
by adjusting the solvent conditions (for instance by the addition of non-ionic polymer)
and thereby changing the range of interaction, such that a metastable 
uid-
uid critical
point is located just below the sublimation curve, we can selectively speed up the rate of
crystal nucleation, but not the rate of crystal growth, nor the rate at which amorphous
aggregates form. We hope that the present results will stimulate experimentalists to
explore this approach to protein crystallization.

Clearly, our description of the early stages of protein crystallization is highly simpli-
�ed. Yet, we believe that the mechanism for enhanced crystal nucleation that we �nd
is quite general. The phase diagram shown in Fig.1B is likely to be the rule, rather
than the exception for compact macromolecules. Moreover, it occurs both in the bulk
and in (quasi) two-dimensional systems (such as membranes). It is therefore tempting
to speculate that Nature already makes extensive use of critical density 
uctuations to
facilitate the formation of ordered structures.
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Appendix MD-algorithm

Following Andersen [138], the Hamiltonian for the isoenthalpic-isobaric (NPH) ensemble
can be written as

H =
1

2mV 3=2

3NX
i=1

p2i +
X
i<j

U(V 1=3xij) +
p2V
2W

+ PextV: (9.14)

Here xi are the coordinates ri scaled with the length of the box L = V 1=3, where V
is the volume of the system, pi = mV 2=3 _xi denote the momenta conjugate to xi, U is
the potential energy, pV = W _V is the momentum conjugate to the volume V and W
is the mass of the piston. From this Hamiltonian the following equations of motion are
derived:

_xi =
@H

@pi
=

pi
mV 2=3

;

_pi = �
@H

@xi
= V 1=3Fi(x; V );

_V =
@H

@pV
=
pV
W

;

_pV = �
@H

@V
= Pint(p;x)� Pext;

(9.15)

where Fi = �
@U
@ri

is the force acting on particle i and Pint(p;x) is the internal pressure.
We have decomposed the Liouville operator into four parts:

iL = iL1 + iL2 + iL3 + iL4; (9.16)

where we have chosen

iL1 =

3NX
i=1

pi
mV 2=3

@

@xj
;

iL2 =
pV
W

@

@V
;

iL3 =

3NX
i=1

V 1=3Fi(x)
@

@pi
;

iL4 = FV (p;x)
@

@pV
:

(9.17)

Here FV (p;x) = Pint(p;x) � Pext is the \force" acting on the volume V . We have
employed a Trotter factorizaton of the Liouville propagator that yields the following
propagator accurate to O(�t2):

U(�t) = eiL4(�t=2)eiL3(�t=2)eiL2(�t=2)eiL1(�t)eiL2(�t=2)eiL3(�t=2)eiL4(�t=2): (9.18)
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From this we obtain the integrator:

pV (�t=2) = pV (0) +
�t

2
FV [p(0);x(0)];

pi(�t=2) = pi(0) +
�t

2
V 1=3Fi[x(0); V (0)];

V (�t=2) = V (0) +
�t

2

pV (�t=2)

W
;

xi(�t) = x(0) + �t
pi(�t=2)

mV 2=3
;

V (�t) = V (�t=2) +
�t

2

pV (�t=2)

W
;

pi(�t) = pi(�t=2) +
�t

2
V 1=3Fi[x(�t); V (�t)];

pV (�t) = pV (�t=2) +
�t

2
FV [p(�t);x(�t)]:

(9.19)

Because of the symmetric factorization of the Liouville propagator, the propagator in
Eq. (9.18) is a unitary operator, and the integrator is time-reversible. The algorithm is
area-preserving because we used scaled coordinates. Note also that we have sandwiched
the propagation of V between the propagation of xi and pi. This ensures that we have
to compute the force only once per time-step.
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Summary

In this thesis we present a numerical study of pathways for homogeneous nucleation.
In chapter 2 we review the thermodynamics of small droplets. In addition, we dis-

cuss the theory that is most widely used to describe the nucleation process, classical
nucleation theory. We consider the discrepancy between classical nucleation theory and
experiments, and discuss the extensions of classical nucleation theory proposed by Mc-
Graw and Laaksonen (J. Chem. Phys. 106, 5284 (1997)) to resolve the discrepancy. We
also present a derivation of the nucleation theorem, which plays an important role in an-
alyzing experimental data as it allows for the determination of the size and composition
of the critical nucleus from the measured nucleation rates.

In chapter 3 we study the rate of homogeneous crystal nucleation and the structure
of crystal nuclei in a Lennard-Jones system. The height of the nucleation barrier is
computed using umbrella sampling, whereas the kinetic prefactor is calculated using
molecular dynamics simulation. The simulations show that the barrier crossing is a
di�usive process. Nevertheless, the kinetic prefactor is some two orders of magnitude
larger than predicted by classical nucleation theory. The height of the nucleation barrier
is in fair agreement with classical nucleation theory. Although the Lennard-Jones system
is known to have a stable face-centered cubic (fcc) structure below the melting line,
the precritical nuclei are found to be body-centered cubic (bcc) ordered. But as they
grow, they become more fcc ordered in the core. Yet, in the interface a high degree of
bcc ordering is retained. Furthermore, it is found that the density falls of faster than
the structural order parameter, which is in agreement with the predictions of density
functional calculations (P. Harrowell and D. W. Oxtoby, J. Chem. Phys. 80, 1639
(1984)) .

In the next chapter, we discuss the choice of the reaction coordinate. Using a global
order parameter, precritical nuclei may break up for entropic reasons. At some point,
however, the nuclei combine to form a relatively large cluster. We present a method
that allows us to avoid the entropic nuclei break up.

In chapter 5 we report on a computer-simulation study of homogeneous gas-liquid
nucleation in a Lennard-Jones system. Using umbrella sampling we compute the free
energy of a cluster as a function of its size. A thermodynamic integration scheme is
employed to determine the height of the nucleation barrier as a function of supersatu-
ration. In agreement with the relations derived by McGraw and Laaksonen (J. Chem.
Phys. 106, 5284 (1997)), we �nd that the o�set between the barrier height as predicted
by classical nucleation theory and the height of the nucleation barrier as obtained from
the simulations, is constant, and independent of supersaturation. The critical-nucleus
size is correctly predicted by classical nucleation theory. Furthermore, our simulations
illustrate that the mechanical and the thermodynamical surfaces of tension and surface
tensions di�er signi�cantly. In particular, we show that the mechanical de�nition of the
surface tension cannot be used to compute the barrier height.
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In chapter 6 we compute the rate of homogeneous gas-liquid nucleation in a Lennard-
Jones system. We focus on the calculation of the transmission coe�cient. The simula-
tions show that the nucleation process is highly di�usive. As a result, the transmission
coe�cient � is very low, � = 0:003� 0:002. Nevertheless, the kinetic prefactor is about
one order of magnitude larger than predicted by classical nucleation theory.

In the next chapter, we report on a study of homogeneous gas-liquid nucleation in a
binary Lennard-Jones mixture. We investigate the size and composition of the critical
nucleus as a function of the composition and supersaturation of the vapor. As we make
the mixture increasingly non-ideal, we �nd that there is a regime, where the species
in the critical nucleus are still miscible, even though in the bulk liquid phase they are
not. When these critical nuclei grow, their composition \bifurcates" to approach the
value of one of the two bulk phases. For more strongly non-ideal mixtures, the two
species in the critical nucleus are no longer miscible: the droplets are rich in one of the
two types of species. We do not �nd evidence for cylindrical, micro-phase separated
nuclei, as suggested by Talanquer and Oxtoby (J. Chem. Phys. 104, 1993 (1996)).
Our simulations show that such demixed clusters have a higher free energy than critical
nuclei that have an asymmetric composition and therefore probably play no important
role in the nucleation process.

In chapter 8 we study homogeneous gas-liquid nucleation in a model for strongly
polar 
uids. While the measured nucleation rates of non-polar substances are in fair
agreement with the predictions of classical nucleation theory, the nucleation rates of
strongly polar substances are seriously overestimated by the theory. Several nucleation
scenarios have been proposed, in which the anisotropic nature of the interaction potential
is taken into account. However, the picture that emerges from the simulations is di�erent
from the theoretical predictions. The simulations show that the nucleation process is
initiated by chain-like clusters. As the cluster size is increased, the chains become
longer. However, beyond a certain size, the chains collapse to form compact, spherical
clusters. Nevertheless, in the interface a high degree of chain formation is preserved.
As a consequence, the interface of the collapsed nuclei di�ers markedly from the planar
interface. This could explain why classical nucleation theory underestimates both the
size of the critical nucleus and the height of the nucleation barrier.

Finally, in chapter 9, we report on a numerical study of homogeneous crystal nu-
cleation in a model system for globular proteins. Proteins are notoriously di�cult to
crystallize. The experiments indicate that the success of protein crystallization depends
very sensitively on the physical conditions of the initial solution. In particular, it has
been found that the proteins only crystallize in a rather narrow region in the phase-
diagram. However, the origin of this crystallization \window" remained unclear. Our
simulations show that the presence of a metastable critical point drastically changes
the pathway for the formation of a critical nucleus. Near the critical point, the nucleus
that is formed initially is not simply a small crystallite, but rather a high-density liq-
uidlike droplet. Only when this liquidlike droplet has reached a certain size, does it
start to crystallize inside the core. More importantly, the alternative pathway that is
followed near the critical point, strongly reduces the height of the nucleation barrier and
hence increases the nucleation rate by many orders of magnitude. As the location of
the metastable critical point can be controlled by changing the solvent conditions, the
simulations suggest a more systematic approach to promote protein crystallization.



Samenvatting

Iedereen weet dat water bevriest bij nul graden Celcius, en kookt bij honderd graden
Celcius. Water kan dus verschillede vormen of fasen aannemen. Elke fase heeft zijn eigen
karakteristieke eigenschappen. Toch zijn de bouwstenen van water in zijn verschillende
verschijningsvormen steeds dezelfde.

De verschillen in eigenschappen worden bepaald door de manier waarop de bouw-
stenen in de fasen zijn gerangschikt. Stel dat we met een enorm sterke microscoop, die
zo'n miljard keer vergroot, naar een glas water zouden kijken. Een momentopname van
wat we dan zien is hieronder, in het midden, schematisch weergegeven. We zien geen

gas vastvloeistof

gladde, continue vloeistof meer, maar deeltjes, met gaten daartussen. Deze deeltjes zijn
de watermoleculen en vormen de bouwstenen van het water. Ze bewegen kriskras door
elkaar, botsen tegen de wand van het glas, en botsen tegen elkaar. Toch blijven ze bij
elkaar in de buurt - het water verdwijnt niet uit het glas. De reden is dat de moleculen
elkaar op afstand aantrekken. Maar op korte afstand stoten de moleculen elkaar weer
af; ze kunnen dan ook niet in elkaar door dringen.

Als we het water verwarmen, zien we dat de moleculen steeds sneller gaan bewegen.
Eerst blijft de onderlinge afstand tussen de moleculen klein. Maar op een gegeven mo-
ment zullen de deeltjes zo snel bewegen, dat de attractieve krachten tussen de moleculen
niet meer sterk genoeg zijn om ze bijeen te houden: de moleculen stuiven uiteen. Het
water raakt aan de kook en maakt dan een fasenovergang van de vloeibare fase naar de
dampfase. Hierbij verandert de dichtheid, het aantal moleculen per liter, van het water
sterk; de dichtheid van stoom is (meestal) vele malen lager dan die van vloeibaar water.

Wat gebeurt er nu als water bevriest? Wanneer de temperatuur van het water
verlaagd wordt, zullen de deeltjes steeds langzamer gaan bewegen. Daardoor komen de
moleculen dichter bij elkaar te zitten; de dichtheid neemt toe. Net zoals bij het koken,
zal op het moment dat het water bevriest, er een plotselinge verandering in de dichtheid
optreden. In tegenstelling tot de meeste sto�en, echter, neemt bij water de dichtheid
iets af wanneer het bevriest. Dit is ook de reden dat we 's winters kunnen schaatsen.
Maar het karakteristieke kenmerk van deze fasenovergang is dat de moleculen zich gaan
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ordenen. In ijs bewegen de deeltjes niet meer kriskras door elkaar heen, maar nemen ze
een min of meer vaste positie op een rooster in. Dergelijke sto�en, waarin de moleculen
gerangschikt zijn volgens een regelmatig patroon, heten kristallijn. Omdat de deeltjes in
een kristal nauwelijks meer ten opzichte van elkaar kunnen bewegen, is een kristal vast
en hard. Niet alle vaste sto�en zijn overigens kristallijn: zoals in een kristal nemen de
deeltjes in sommige sto�en wel vrijwel ge�xeerde posities in, maar zijn ze niet `netjes'
geordend. Deze sto�en heten amorf of worden ook wel een glas genoemd.

De fase waarin een stof zich manifesteert hangt niet alleen af van de temperatuur,
maar ook van de druk. Terwijl het kookpunt van water op zeeniveau bij 100�C ligt, is het
gedaald tot 93�C op 2000 meter hoogte, waar de druk lager is. Op de drukafhankelijkheid
van het kookpunt is ook de werking van de snelkookpan gebaseerd. In een snelkookpan
wordt water onder hogere druk (dan atmosferische druk) aan de kook gebracht. Door
de hogere druk zal het water bij een hogere temperatuur gaan koken, waardoor het eten
sneller gaar wordt. In de industrie laat men vaak vloeisto�en kristalliseren door niet
zozeer de temperatuur te verlagen, als wel door de druk sterk op te voeren.

Tot nu toe zijn we er steeds vanuit gegaan dat water, bij atmosferische druk, bij nul
graden bevriest en bij honderd graden Celcius kookt. Toch is dit niet vanzelfsprekend. Al
aan het begin van de achttiende eeuw ontdekte Fahrenheit dat schoon water onderkoeld
kan worden tot min negen graden Celcius zonder te bevriezen. Pas wanneer hij kleine
ijskristallen toevoegde, bevroor het water, en steeg de temperatuur van het ijs-water
`mengsel' naar nul graden, het co�existentiepunt.

De reden dat zuiver water pas na toevoeging van ijskristallietjes bevriest, is dat
deze fungeren als kiemen voor het kristallisatieproces. In `normaal' water, initi�eren
stofdeeltjes vaak het bevriezen van water. Dit wordt heterogene nucleatie genoemd.
Bij afwezigheid van zulke kiemen moet het water als het ware van binnenuit bevriezen.
Dit proces, homogene nucleatie genaamd, is veel `moeilijker', omdat de eerste kiemen,
kleine ijskristallietjes, spontaan gevormd moeten worden. In het water bewegen de
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moleculen kriskras door elkaar heen. Om eem kiem te vormen, moet een aantal deeltjes
toevallig in een kristallijne con�guratie samenkomen. De kans dat door een dergelijke
spontane 
uctuatie een kristallietje van zo'n zeven deeltjes gevormd wordt, is echter
klein, minder dan een honderste per kubieke centimeter. Bovendien zullen de meeste
van deze kristallietjes weer oplossen in het water. De kiemen moeten namelijk een
bepaalde energiebarri�ere, de zogeheten nucleatiebarri�ere, overwinnen om uit te kunnen
groeien tot een groot kristal.
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Zoals een bal altijd naar het laagste punt rolt omdat het daarmee zijn potenti�ele
energie kan minimaliseren, zo zal een kiem altijd zijn vrije energie willen minimali-
seren. De energie van een kiem hangt af van zijn grootte, zoals hieronder schematisch
is weergegeven1. Kiemen op de top van de barri�ere worden kritieke kiemen genoemd.

kiemgrootte

vr
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 e
ne
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ie

Kiemen die kleiner zijn dan de kritieke kiemgrootte, de zogeheten prekritieke kiemen,
kunnen hun energie verlagen door te `krimpen'; deze kiemen hebben de neiging weer op te
lossen in de vloeistof. Kiemen die daarentegen groter zijn dan de kritieke kiemgrootte,
de zogenaamde postkritieke kiemen, kunnen hun energie minimaliseren door juist te
groeien. Kiemen moeten dus een bepaalde kritieke grootte bereiken om door te kunnen
groeien tot een groot ijskristal.

De barri�erehoogte wordt bepaald door de temperatuur en de druk. Bij nul graden
Celcius en atmosferische druk, het co�existentiepunt voor water, is de hoogte van de
nucleatiebarri�ere voor het bevriezen van zuiver water oneindig. Om deze reden zal
water, als we het langzaam afkoelen, helemaal niet bevriezen bij nul graden. We moeten
de temperatuur eerst verder verlagen om de hoogte van de barri�ere te reduceren. Pas
wanneer het water zo ver is onderkoeld dat de kiemen de barri�ere kunnen overwinnen,
zal het water bevriezen.

De structuur van de kiemen op de top van de barri�ere bepaalt de hoogte van de
nucleatiebarri�ere en daarmee de snelheid van de fasenovergang. Om deze reden richten
alle theorie�en zich op het beschrijven van deze kritieke kiemen.

In de meest populaire nucleatietheorie, de zogenaamde klassieke nucleatieheorie,
wordt aangenomen dat de kiemen bolvormig zijn. Bovendien wordt verondersteld dat de
structuur van de kiemen gelijk is aan de structuur van de fase die uiteindelijk gevormd
wordt. Dus, om weer het voorbeeld van water te nemen, er wordt aangenomen dat de
moleculen in een klein ijskristallietje (de kiem) opdezelfde manier gerangschikt zijn als
in `bulk' ijs.

Maar welke vaste fase van ijs wordt eigenlijk gevormd? Over het algemeen kunnen
sto�en namelijk niet in �e�en vaste toestand voorkomen, maar in verscheidene. Zo is
onlangs een negende vaste fase van ijs ontdekt. Bij een gegeven druk en temperatuur
is �e�en fase altijd het meest stabiel. Deze fase heeft de laagste vrije energie. Als een

1In de genoemde analogie correspondeert de grootte van de kiem met de positie van de bal.
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vloeistof in een andere, minder stabiele vaste toestand is gekristalliseerd, kan de stof
in principe zijn vrije energie nog verder minimaliseren, door te transformeren naar de
meest stabiele vaste fase. Vaak is dit evenwel niet mogelijk. Dergelijke fasen, die niet
meer over kunnen gaan in een stabielere fase, worden metastabiel genoemd.

Het lijkt voor de hand te liggen dat als een vloeistof wordt onderkoeld, de meest
stabiele vaste fase gevormd zal worden. Dit is immers de meest gunstige eindtoe-
stand voor het systeem. Toch is het voorstelbaar dat het pad naar een metastabiele fase
`makkelijker' is, en dat, als gevolg daarvan, een metastabiele structuur gevormd zal wor-
den. Aan het eind van de vorige eeuw formuleerde Ostwald reeds zijn stappenregel, die
zegt dat in eerste instantie niet de meest stabiele fase gevormd wordt, maar een fase
die meer op de vloeistof `lijkt'. Ook meer recentelijk zijn er theorie�een ontwikkeld die
voorspellen dat niet de meest stabiele structuur wordt gevormd, maar een metastabiele
structuur.

Hoewel verscheidene theorie�en zijn opgesteld, is ons inzicht op moleculair niveau
nog steeds beperkt. Een van de belangrijkste oorzaken is dat de theoretische voor-
spellingen moeilijk te toetsen zijn in een experiment. Kritieke kiemen worden weinig
gevormd. De kans dat een kleine kiem de top van de barri�ere haalt is minder dan
een miljardste. Bovendien, als kiemen de top van de barri�ere al halen, verblijven ze
er maar heel kort, minder dan een duizendste van een milliseconde. Het is dus bijna
onmogelijk om de kritieke kiemen in een experiment te kunnen `zien'. Toch is het precies
de structuur en de dynamica van deze kiemen die bepalen welke fase gevormd wordt en
hoe snel.

Een `computerexperiment' kan hier uitkomst bieden. In computersimulaties boot-
sen we het gedrag van moleculen na. We weten tijdens een simulatie op elk moment
waar de moleculen zich bevinden. Dit stelt ons in staat de kiemen op de top van
de nucleatiebarri�ere nauwkeurig te onderzoeken. Bovendien kunnen we een goed inzicht
krijgen in hoe deze kiemen gevormd worden. Computersimulaties is dus een zeer geschikt
instrument om de paden waarlangs homogene nucleatie verloopt, te bestuderen.

In dit proefschrift bestuderen we condensatie en kristallisatie in verscheidene
modelsystemen, wat ons in staat stelt een aantal theoretische voorspellingen te ve-
ri��eren. In hoofdstuk 2 bieden we achtergrond informatie over de thermodynamica
van het nucleatieproces. We leiden in dit hoofdstuk een aantal (standaard) relaties af,
die we in de latere hoofdstukken zullen gebruiken.

In hoofdstuk 3 bestuderen we kristalnucleatie in een veelgebruikt model systeem,
het zogenaamde Lennard-Jones systeem. De meest stabiele vaste fase beneden het
vriespunt is de vlakgecentreerde kubische (fcc) fase. Maar, zoals reeds aangegeven,
kristallisatie is in essentie een dynamisch proces, en we mogen niet a priori verwachten
dat de meest stabiele fase ook daadwerkelijk gevormd zal worden. Meer in het bijzonder,
een aantal theorie�en voorspelt dat de vloeistof niet in de fcc fase, maar in een metasta-
biele, lichaamsgecentreerde kubische (bcc) fase zal kristalliseren. Om deze theorie�en te
toetsen zijn sinds de jaren zeventig jaren verscheidene simulatiestudies uitgevoerd. De re-
sultaten waren echter niet eenduidig: alhoewel in sommige studies aanwijzingen voor de
vorming van een bcc fase gevonden werden, vond men in de meeste studies kristallisatie
van de fcc fase. Daarnaast moest in al deze studies de vloeistof sterk worden onderkoeld
om een nucleatie-event te kunnen waarnemen. Wij hebben een techniek toegepast die het
mogelijk maakt om nucleatie bij matige, meer realistische, onderkoeling te onderzoeken.
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En, het blijkt dat onze simulaties uitsluitsel kunnen geven over de vraag welke rol de
bcc-structuur speelt in het nucleatieproces. Zoals hieronder schematisch is weergegeven,
nemen de kiemen die het nucleatieproces initi�eren, een bcc structuur aan. Als de kiemen

vloeistof

bcc fcc

bcc

echter groter worden, transformeert hun kern naar de stabiele fcc structuur. Niettemin
blijft aan de buitenkant van de kiemen, op het grensvlak met de vloeistof, een sterke
mate van bcc-ordening bestaan.

In het volgende hoofdstuk ver�jnen we de simulatietechniek, waardoor we beter in
staat zijn de prekritieke kiemen te bestuderen. In hoofdstuk 5 passen we de nieuwe
techniek toe in een studie naar de nucleatie van een vloeistof druppel vanuit de damp-
fase. Het modelsysteem is weer het Lennard-Jones systeem. Het blijkt dat de structuur
van de vloeistof druppels goed voorspeld wordt door de theorie�en. Bovendien stemt
de hoogte van de nucleatiebarri�ere redelijk overeen met de theoretische voorspellingen.
Verder gaan we in dit hoofdstuk in op het grensvlak tussen een druppel en de damp. Op
moleculair niveau is de grens tussen een druppel en de damp niet scherp - de dichtheid
van de moleculen neemt, vanuit het midden van de druppel, geleidelijk af. De grens is
dus tot op zekere hoogte arbitrair. Het is dan ook mogelijk om verschillende de�nities
van het grensvlak te geven. Tot nu toe werd verondersteld dat de verschillende de�ni-
ties dezelfde locatie van het grensvlak geven. Als gevolg hiervan zou de hoogte van de
nucleatiebarri�ere op een relatief simpele manier uitgerekend kunnen worden. Onze simu-
laties tonen aan dat de verschillende de�nities niet equivalent zijn, en dat de eenvoudige
manier om de barri�erehoogte uit te rekenen `fout' is.

De hoogte van de nucleatiebarri�ere bepaalt het aantal kritieke kiemen. In het vol-
gende hoofdstuk rekenen we de snelheid uit van de kiemen op de top van de barri�ere.
Bovendien bepalen we de transmissieco�e�ci�ent. De transmissieco�e�cient geeft de fractie
kritieke kiemen aan dat daadwerkelijk uitgroeit tot een macroscropische druppel. Als
de transmissieco�e�ci�ent co�e�cient �e�en is, groeien alle kiemen op de top van de barri�ere
uit tot een grote vloeistof druppel. Het nucleatieproces heet dan ballistisch. Over het
algemeen zullen echter niet alle druppeltjes doorgroeien. Sommige kiemen zullen toch
weer verdampen. Deze kiemen dragen dan niet bij aan de nucleatiesnelheid. De nucle-
atiesnelheid wordt dus gegeven door het produkt van het aantal kiemen op de top van de
barri�ere, de snelheid van de kiemen op de top van de barri�ere, en de transmissieco�e�ci�ent.

Uit de simulaties volgt dat voor gas-vloeistof nucleatie de transmissieco�e�ci�ent erg
laag is, veel lager dan het geval is voor kristalnucleatie. Dit komt doordat de top van
de nucleatiebarri�ere op microscopische schaal vlak is, waardoor de kiemen, als ze de top
van de barri�ere hebben bereikt, niet onmiddelijk zullen `doorrollen' naar de eindtoestand
aan de andere kant van de barri�ere, maar als het ware de tijd hebben om af te remmen,
en weer te verdampen.
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Tot nu toe zijn we er steeds vanuit gegaan dat alle moleculen in het systeem identiek
zijn. In het volgende hoofdstuk bestuderen we de nucleatie van mengsels van vloeisto�en
vanuit de dampfase. Een belangrijke vraag die met betrekking tot mengsels gesteld
kan worden, is of de moleculen mengbaar zijn of niet. Zo mengen bijvoorbeeld water
en alcohol heel goed, maar olie en water niet; in het geval van olie en water treedt
fasenscheiding op. In hoofdstuk 7 richten we ons voornamelijk op dergelijke mengsels.
Wij vonden in de simulaties namelijk dat moleculen zoals olie en water, waarvan je dus
zou verwachten dat ze niet goed mengbaar zijn, in kleine druppels wel degelijk goed
mengen. De vraag die rijst is: hoe groeien deze kleine druppels, waarin de moleculen
gemengd voorkomen, uit tot een vloeistof, waarin de moleculen zijn fasengescheiden?

De simulaties laten zien dat eigenlijk alleen in de allerkleinste druppels de moleculen
echt goed mengen. Wanneer de druppels groter worden, verrijken ze zich in �e�en van
beide componenten. Toch kan een kleine druppel bestaande uit hoofdzakelijk de ene
component, door uitwisseling met moleculen in het gas, nog overgaan in een druppel
die rijk is in de andere component, omdat voor kleine druppels de vrije energiebarri�ere
tussen beide soorten druppels laag is. Naarmate de kiemen groter worden, neemt de
hoogte van deze barri�ere toe. Op een bepaald moment zal de barri�ere zo hoog worden,
dat de overgang van het ene type cluster naar het andere niet meer gemaakt kan worden:
een druppel is rijk in �e�en van beide componenten, en blijft rijk in diezelfde component.

In hoofdstuk 8 onderzoeken we condensatie in een model voor polaire vloeisto�en.
De condensatie van een druppel water, een polaire vloeistof, is waarschijnlijk het bekend-
ste voorbeeld van homogene nucleatie. Het bekendst betekent echter nog niet het best
begrepen. Integendeel, terwijl klassieke nucleatietheorie de nucleatiesnelheid van apo-
laire moleculen redelijk voorspelt, overschat de theorie de nucleatiesnelheid van polaire
moleculen aanzienlijk.

Polaire moleculen hebben een positieve `kop' en een negatieve `staart'. De interactie
tussen twee moleculen is het gunstigst wanneer ze kop-aan-staart liggen. Om de dis-
crepantie tussen theorie en experiment te verklaren heeft men dan ook verschillende nu-
cleatiescenario's opgesteld waarin deze anisotrope wisselwerking tussen de moleculen een
belangrijke rol speelt. Zo is bijvoorbeeld voorgesteld dat de druppels niet een bolvorm
aannemen, zoals bij apolaire moleculen, maar de vorm van een rugbybal.

De simulaties tonen een geheel ander beeld. De kiemen die het nucleatieproces
initi�eren zijn geen compacte druppels, maar ketens, waarin de moleculen kop-aan-staart
liggen. In eerste instantie, als het aantal moleculen in de ketens toeneemt, worden de
ketens langer. Bij een bepaalde grootte, echter, `klonteren' de ketens plotseling samen en
vormen de moleculen alsnog een compacte druppel. Aan de buitenkant van de druppels
blijven niettemin de ketens bestaan, zoals hieronder in `snapshots' van de simulaties is
te zien.
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Hoofdstuk 9, tenslotte, gaat over eiwitkristallisatie. Ten gevolge van de snelle
ontwikkelingen in de biotechnologie worden steeds meer eiwitten ge��soleerd. Het bepalen
van de drie-dimensionale structuur van de eiwitten met behulp van r�ontgendi�ractie, is
echter nog steeds een tijdrovend proces. E�en van de redenen is dat eiwitten moeilijk te
kristalliseren zijn. De experimenten laten zien dat eiwitten alleen onder hele speci�eke
condities kristalliseren. Bovendien zijn deze condities vaak niet op voorhand te bepalen.
Met als gevolg dat eiwit kristallisatie voornamelijk een kwestie van trial and error is.

De computersimulaties die we hebben uitgevoerd aan een model voor bolvormige
eiwitten, hebben onthuld waarom deze eiwitten alleen onder bepaalde condities makkelijk
kristalliseren. Onder deze condities treden sterke dichtheids
uctuaties in het systeem
op. Deze dichtheids
uctuaties veranderen het pad voor de vorming van kritieke kiemen
drastisch. In afwezigheid van de sterke dichtheids
uctuaties wordt het reguliere scenario
gevolgd, waarbij kristallijne kiemen het kristallisatieproces initi�eren.

In aanwezigheid van de sterke dichtheids
uctuaties kristalliseert het eiwit volgens
de Ostwald stappenregel. In eerste instantie worden helemaal geen kristallijne kiemen
gevormd. Door de sterke dichtheids
uctuaties is het mogelijk om eerst druppels te
vormen, waarin de eiwitten dichter bij elkaar zitten dan in de omringende vloeistof. Pas
in de tweede stap treedt kristallisatie op: als de vloeistof druppels groot genoeg zijn,
kristalliseren ze van binnenuit tot kristallijne kritieke kiemen; de kristallijne kritieke
kiemen groeien vervolgens uit tot een groot kristal.

Het is dus duidelijk dat de sterke dichtheids
uctuaties het pad waarlangs homogene
nucleatie verloopt, be��nvloeden. Maar waarom vergemakkelijkt dit ook het kristallisatie-
proces? Het antwoord is dat het alternatieve pad, dat door deze dichtheids
uctuaties
gevolgd kan worden, de nucleatiebarri�ere sterk verlaagt, met zo'n 30%. Dit klinkt miss-
chien niet zo veel. Maar omdat de nucleatiesnelheid sterk af hangt van de hoogte van
de nucleatiebarri�ere, betekent deze reductie in de barri�erehoogte dat de nucleatie in
aanwezigheid van deze dichtheids
uctuaties meer dan een biljoen keer sneller verloopt.

Dankzij de simulaties begrijpen we nu waarom eiwitten onder bepaalde condities
sneller kristalliseren. Wellicht dat de resultaten van de simulaties leiden tot een meer
gerichte aanpak van eiwitkristallisatie.
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